3 矢列演算
- 公式结构:由公式组成的有穷序列,也称作结构,用 \(\Gamma, \Delta, \Sigma\) 等表示
- 一个结构 \(\Gamma\) 的长度是指该序列的长度,记为 \(|\Gamma|\)
- 空公式序列记为 \(\varnothing\),其序列长度为 \(0\)
- 由公式 \(\alpha_{1}, \cdots, \alpha_{n} \in \mathscr{L}\) 组成的结构记为 \(\alpha_{1}, \cdots, \alpha_{n}\),称逗号为结构算子.特别地,\(n\) 个 \(\alpha\) 组成的结构记为 \(\alpha^{n}\)
- 一个矢列是形如 \(\Gamma \Rightarrow \Delta\) 的表达式,其中 \(\Gamma\) 和 \(\Delta\) 是结构
- 当前件和后件都是空序时,可省略 \(\varnothing\).特别地,\(\Rightarrow\) 是一个矢列
- 对任意矢列 \(\Gamma \Rightarrow \Delta\),称 \(\Gamma\) 为前件,\(\Delta\) 为后件
- 一个矢列规则 \((\text{R})\) 是以矢列为前提与结论的推理规则
- 令 \(\Gamma=\alpha_{1}, \cdots, \alpha_{n}\) 并且 \(\Delta=\beta_{1}, \cdots, \beta_{m}\).定义 \(\bigwedge \Gamma=\alpha_{1} \wedge \cdots \wedge \alpha_{n}\) 并且 \(\bigvee \Delta= \beta_{1} \vee \cdots \vee \beta_{m}\)
- 令 \(\bigwedge \varnothing=\top\) 且 \(\bigvee \varnothing=\perp\)
- \(\Gamma \Rightarrow \Delta\) 表明若 \(\Gamma\) 中所有公式都是真的,那么 \(\Delta\) 中至少有一个公式是真的
- 矢列的前件中逗号的意义是 \(\wedge\),后件中逗号的意义是 \(\vee\)
- 若 \(\bigwedge \Gamma \rightarrow \bigvee \Delta\) 是重言式,则称 \(\Gamma \Rightarrow \Delta\) 是有效的,记作 \(\vDash \Gamma \Rightarrow \Delta\)
3.1 命题逻辑矢列演算
3.2.1 G0 型演算
-
经典命题逻辑的矢列演算 \(\mathbf{G0cp}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \Delta, \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\).对联结词 \(\circ \in\{\wedge, \vee, \rightarrow\}\),称 \((\circ l)\) 为左规则,\((\circ r)\) 为右规则;结论中含联结词的公式称为主公式
-
结构规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\Rightarrow\!\text{w})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha, \alpha$} \RightLabel{ $(\Rightarrow\!\text{c})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma, \alpha, \beta, \Sigma \Rightarrow \Delta$} \RightLabel{ $(\text{e}\!\Rightarrow)$} \UnaryInfC{$\Gamma, \beta, \alpha, \Sigma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Sigma, \alpha, \beta, \Delta$} \RightLabel{ $(\Rightarrow\!\text{e})$} \UnaryInfC{$\Gamma \Rightarrow \Sigma, \beta, \alpha, \Delta$} \end{prooftree} } \]分别称上述三行为弱化规则、收缩规则、交换规则
-
切割规则
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\alpha, \Sigma \Rightarrow \Theta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Sigma \Rightarrow \Delta, \Theta$} \end{prooftree} \]
-
一个推导 \(\mathcal{D}\) 是由矢列组成的有穷树结构,其中每个节点要么是公理,要么是从子节点矢列使用某个规则得到的
- 一个推导 \(\mathcal{D}\) 的高度是其中极大分枝的最大长度,记作 \(|\mathcal{D}|\),由单个节点组成的推导的高度为 \(0\)
- 如果存在 \(\mathbf{G0cp}\) 中推导 \(\mathcal{D}\) 使得 \(\mathcal{D}\) 的根节点为 \(\Gamma \Rightarrow \Delta\),则称矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{GOcp}\) 中可推导,记作 \(\mathbf{G0cp} \vdash \Gamma \Rightarrow \Delta\)
- 在不引起歧义的情况下可删除前缀 \(\mathbf{G0cp}\)
- 对任意自然数 \(n \geqslant 0\),\(\mathbf{G0cp} \vdash_{n} \Gamma \Rightarrow \Delta\) 表示 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G0cp}\) 中有推导 \(\mathcal{D}\) 使得 \(|\mathcal{D}| \leqslant n\)
- 在推导中,连续 \(n\) 次应用矢列规则 \(\text{R}\) 记为 \(\text{R}^{n}\)
-
称以 \(\Gamma_{i} \Rightarrow \Delta_{i}\) 为前提且以 \(\Gamma \Rightarrow \Delta\) 为结论的规则 \(\text{R}\) 在 \(\mathbf{G0cp}\) 中可允许当且仅当 \(\mathbf{G 0 c p} \vdash \Gamma_{i} \Rightarrow \Delta_{i}\) 蕴涵 \(\mathbf{G0cp}\) \(\vdash \Gamma \Rightarrow \Delta\)
-
以下广义联结词规则在 \(\mathbf{G0cp}\) 中可允许
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma_{1}, \alpha_{i}, \Gamma_{2} \Rightarrow \Delta$} \RightLabel{ $(\wedge_{g}\Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \alpha_{1} \wedge \alpha_{2}, \Gamma_{2} \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha, \Sigma$} \AxiomC{$\Gamma \Rightarrow \Delta, \beta, \Sigma$} \RightLabel{ $(\Rightarrow\!\wedge_{g})$} \BinaryInfC{$\Gamma \Rightarrow \Delta, \alpha \wedge \beta, \Sigma$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma_{1}, \alpha, \Gamma_{2} \Rightarrow \Delta$} \AxiomC{$\Gamma_{1}, \beta, \Gamma_{2} \Rightarrow \Delta$} \RightLabel{ $(\vee_{g} \Rightarrow)$} \BinaryInfC{$\Gamma_{1}, \alpha \vee \beta, \Gamma_{2} \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha_{i}, \Sigma$} \RightLabel{ $(\Rightarrow\!\vee_{g})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha_{1} \vee \alpha_{2}, \Sigma$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Theta_{1}, \alpha, \Theta_{2}$} \AxiomC{$\Sigma, \beta, \Delta \Rightarrow \Pi$} \RightLabel{ $(\rightarrow_{g} \Rightarrow)$} \BinaryInfC{$\Sigma, \Gamma, \alpha \rightarrow \beta, \Delta \Rightarrow \Theta_{1}, \Pi, \Theta_{2}$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma_{1}, \alpha, \Gamma_{2} \Rightarrow \Delta, \beta, \Sigma$} \RightLabel{ $(\Rightarrow \rightarrow_{g})$} \UnaryInfC{$\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta, \alpha \rightarrow \beta, \Sigma$} \end{prooftree} } \]其中 \(i = 1, 2\)
-
以下广义结构规则在 \(\mathbf{G0cp}\) 中可允许
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta$} \RightLabel{ $(\text{w}_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \Sigma, \Gamma_{2} \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta_{1}, \Delta_{2}$} \RightLabel{ $(\Rightarrow \text{w}_{g})$} \UnaryInfC{$\Gamma \Rightarrow \Delta_{1}, \Sigma, \Delta_{2}$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma_{1}, \Sigma, \Sigma, \Gamma_{2} \Rightarrow \Delta$} \RightLabel{ $(\text{c}_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \Sigma, \Gamma_{2} \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta_{1}, \Sigma, \Sigma, \Delta_{2}$} \RightLabel{ $(\Rightarrow \text{c}_{g})$} \UnaryInfC{$\Gamma \Rightarrow \Delta_{1}, \Sigma, \Delta_{2}$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma_{1}, \Sigma_{1}, \Sigma_{2}, \Gamma_{2} \Rightarrow \Delta$} \RightLabel{ $(\text{e}_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \Sigma_{2}, \Sigma_{1}, \Gamma_{2} \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta_{1}, \Sigma_{1}, \Sigma_{2}, \Delta_{2}$} \RightLabel{ $(\Rightarrow \text{e}_{g})$} \UnaryInfC{$\Gamma \Rightarrow \Delta_{1}, \Sigma_{2}, \Sigma_{1}, \Delta_{2}$} \end{prooftree} } \] -
以下广义切割规则在 \(\mathbf{G0cp}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \AxiomC{$\Sigma \Rightarrow \Theta$} \RightLabel{ $(\text{Cut}_{g})$} \BinaryInfC{$\Gamma, \Sigma_{\alpha} \Rightarrow \Delta_{\alpha}, \Theta$} \end{prooftree} \]
其中 \(\alpha\) 在 \(\Delta\) 和 \(\Sigma\) 的分量中各自至少出现 \(1\) 次,且 \(\Delta_{\alpha}\) 和 \(\Sigma_{\alpha}\) 分别是从 \(\Delta\) 和 \(\Sigma\) 删除分量 \(\alpha\) 所有出现得到的结构.特别地,若 \(\alpha\) 不在结构 \(\Pi\) 中出现,则 \(\Pi_{\alpha}=\Pi\)
-
-
\(\mathbf{G0cp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\bigwedge \Gamma \vdash_{\mathbf{HK}} \bigvee \Delta\)
- 如果 \(\vdash_{\textbf{HK}} \alpha\),那么 \(\mathbf{G0cp} \vdash \Rightarrow \alpha\)
- \(\mathbf{G0cp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\vDash \Gamma \Rightarrow \Delta\)
-
-
直觉主义命题逻辑的矢列演算 \(\mathbf{G0ip}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \beta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \chi$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\)
-
结构规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma, \alpha, \beta, \Sigma \Rightarrow \chi$} \RightLabel{ $(\text{e}\!\Rightarrow)$} \UnaryInfC{$\Gamma, \beta, \alpha, \Sigma \Rightarrow \chi$} \end{prooftree} } \] -
切割规则
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\alpha, \Delta \Rightarrow \beta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Delta \Rightarrow \beta$} \end{prooftree} \]
\(\mathbf{G0ip} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G0ip}\) 中可推导
-
称以 \(\Gamma_{i} \Rightarrow \Delta_{i}\) 为前提且以 \(\Gamma \Rightarrow \Delta\) 为结论的规则 \(\text{R}\) 在 \(\mathbf{G0ip}\) 中可允许当且仅当 \(\mathbf{G 0 c p} \vdash \Gamma_{i} \Rightarrow \Delta_{i}\) 蕴涵 \(\mathbf{G0ip}\) \(\vdash \Gamma \Rightarrow \Delta\)
-
以下广义联结词规则在 \(\mathbf{G0ip}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma_{1}, \alpha_{i}, \Gamma_{2} \Rightarrow \beta$} \RightLabel{ $(\wedge_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \alpha_{1} \wedge \alpha_{2}, \Gamma_{2} \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma_{1}, \alpha, \Gamma_{2} \Rightarrow \chi$} \AxiomC{$\Gamma_{1}, \beta, \Gamma_{2} \Rightarrow \chi$} \RightLabel{ $(\vee_{g} \Rightarrow)$} \BinaryInfC{$\Gamma_{1}, \alpha \vee \beta, \Gamma_{2} \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\Sigma, \beta, \Delta \Rightarrow \chi$} \RightLabel{ $(\rightarrow_{g} \Rightarrow)$} \BinaryInfC{$\Sigma, \Gamma, \alpha \rightarrow \beta, \Delta \Rightarrow \chi$} \end{prooftree} \quad \]其中 \(i = 1, 2\)
-
以下广义结构规则在 \(\mathbf{G0ip}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma_{1}, \Gamma_{2} \Rightarrow \beta$} \RightLabel{ $(\text{w}_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \Sigma, \Gamma_{2} \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma_{1}, \Sigma, \Sigma, \Gamma_{2} \Rightarrow \beta$} \RightLabel{ $(\text{c}_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \Sigma, \Gamma_{2} \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma_{1}, \Sigma_{1}, \Sigma_{2}, \Gamma_{2} \Rightarrow \beta$} \RightLabel{ $(\text{e}_{g} \Rightarrow)$} \UnaryInfC{$\Gamma_{1}, \Sigma_{2}, \Sigma_{1}, \Gamma_{2} \Rightarrow \beta$} \end{prooftree} \quad \]
-
-
\(\mathbf{G0ip} \vdash \Gamma \Rightarrow \alpha\) 当且仅当 \(\bigwedge \Gamma \vdash_{\mathbf{HJ}} \alpha\)
- 如果 \(\vdash_{\textbf{HJ}} \alpha\),那么 \(\mathbf{G0ip} \vdash \Rightarrow \alpha\)
- \(\mathbf{G0ip} \vdash \Gamma \Rightarrow \alpha\) 当且仅当 \(\vDash \Gamma \Rightarrow \alpha\)
-
-
切割消除:称矢列演算 \(\mathbf{G}\) 具有切割消除性质当且仅当在 \(\mathbf{G}\) 中可推导的任意矢列都存在无切割推导(即不出现切割规则的应用)
- 矢列演算 \(\mathbf{G0cp}^{\sharp}\) 是从 \(\mathbf{G0cp}\) 删除 \(\text{Cut}\) 规则得到的系统,\(\mathbf{G0ip}^{\sharp}\) 是从 \(\mathbf{G0ip}\) 删除 \(\text{Cut}\) 规则得到的系统
- 设 \(\perp\) 在 \(\Delta\) 中至少出现 \(1\) 次,若 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma \Rightarrow \Delta\),那么 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma \Rightarrow \Delta_{\perp}\)
- 若 \(\mathbf{G0ip}^{\sharp} \vdash \Gamma \Rightarrow \perp\),则 \(\mathbf{G0ip}^{\sharp} \vdash \Gamma \Rightarrow \beta\)
-
矢列演算 \(\mathbf{G0cp}^{*}\) 是在 \(\mathbf{G0cp}^{\sharp}\) 基础上增加广义切割规则的系统
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \AxiomC{$\Sigma \Rightarrow \Theta$} \RightLabel{ $(\text{Cut}_{g})$} \BinaryInfC{$\Gamma, \Sigma_{\alpha} \Rightarrow \Delta_{\alpha}, \Theta$} \end{prooftree} \]- 对任意矢列 \(\Gamma \Rightarrow \Delta\),\(\mathbf{G0cp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\mathbf{G0cp}^{*} \vdash \Gamma \Rightarrow \Delta\)
- 如果 \(\mathbf{G0cp}^{*} \vdash \Pi_{1} \Rightarrow \Pi_{2}\),则 \(\Pi_{1} \Rightarrow \Pi_{2}\) 在 \(\mathbf{G0cp}^{*}\) 中不使用 \(\text{Cut}_{g}\) 可推导
-
矢列演算 \(\mathbf{G0ip}^{*}\) 是在 \(\mathbf{G0ip}^{\sharp}\) 基础上增加广义切割规则的系统
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\Sigma \Rightarrow \beta$} \RightLabel{ $(\text{Cut}_{g})$} \BinaryInfC{$\Gamma, \Sigma_{\alpha} \Rightarrow \beta$} \end{prooftree} \]- 对任意矢列 \(\Gamma \Rightarrow \beta\),\(\mathbf{G0ip}^{*} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\mathbf{G0ip}^{*} \vdash \Gamma \Rightarrow \beta\)
- 如果 \(\mathbf{G0ip}^{*} \vdash \Pi \Rightarrow \delta\),那么 \(\Pi \Rightarrow \delta\) 在 \(\mathbf{G0ip}^{*}\) 中不使用 \(\text{Cut}_{g}\) 可推导
-
\(\mathbf{G0cp}\) 与 \(\mathbf{G0ip}\) 具有切割消除性质
- \(\mathbf{G0cp}\) 与 \(\mathbf{G0ip}\) 具有子公式性质,即可推导的矢列都有推导 \(\mathcal{D}\) 使得其中出现的每个公式都是其根节点矢列某个公式的子公式
- 若 \(\mathbf{G0ip} \vdash \Rightarrow \alpha \vee \beta\),则 \(\mathbf{G0ip} \vdash \Rightarrow \alpha\) 或 \(\mathbf{G0ip} \vdash \Rightarrow \beta\)
- 若 \(\vdash_{\mathbf{HJ}} \alpha \vee \beta\),则 \(\vdash_{\mathbf{HJ}} \alpha\) 或者 \(\vdash_{\mathbf{HJ}} \beta\)
- 矢列演算 \(\mathbf{G0cp}^{\sharp}\) 是从 \(\mathbf{G0cp}\) 删除 \(\text{Cut}\) 规则得到的系统,\(\mathbf{G0ip}^{\sharp}\) 是从 \(\mathbf{G0ip}\) 删除 \(\text{Cut}\) 规则得到的系统
-
\(\mathbf{G0cp}\) 与 \(\mathbf{G0ip}\) 是可判定的
- 称矢列 \(\Gamma \Rightarrow \Delta\) 是 \(n-\)度矢列当且仅当 \(\Gamma\) 中每个公式至多出现 \(n\) 次并且 \(\Delta\) 中每个公式至多出现 \(n\) 次
- 称 \(\Gamma^{*} \Rightarrow \Delta^{*}\) 是 \(\Gamma \Rightarrow \Delta\) 的收缩矢列当且仅当 \(\Gamma^{*} \Rightarrow \Delta^{*}\) 是从 \(\Gamma \Rightarrow \Delta\) 有穷多次运用收缩和交换规则得到的
- 对 \(\mathbf{G0cp}\) 中任意推导 \(\mathcal{D}\),存在最小自然数 \(n>0\) 使得 \(\mathcal{D}\) 中每个矢列都是 \(n-\)度矢列,记该自然数为 \(d(\mathcal{D})\)
- 对任意矢列 \(\Gamma \Rightarrow \Delta\),存在 \(\Gamma \Rightarrow \Delta\) 的 \(1-\)度收缩矢列 \(\Gamma^{*} \Rightarrow \Delta^{*}\) 使得 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma^{*} \Rightarrow \Delta^{*}\)
- 设 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma \Rightarrow \Delta\),若 \(\Gamma^{*} \Rightarrow \Delta^{*}\) 是 \(\Gamma \Rightarrow \Delta\) 的 \(1-\)度收缩矢列,则存在 \(\Gamma^{*} \Rightarrow \Delta^{*}\) 的无重复推导 \(\mathcal{D}\) 使得 \(d(\mathcal{D}) \leqslant 3\)
- 称矢列 \(\Gamma \Rightarrow \alpha\) 是 \(n-\)度矢列当且仅当 \(\Gamma\) 中每个公式至多出现 \(n\) 次
- 称 \(\Gamma^{*} \Rightarrow \beta^{*}\) 是 \(\Gamma \Rightarrow \beta\) 的收缩矢列当且仅当 \(\Gamma^{*} \Rightarrow \beta^{*}\) 是从 \(\Gamma \Rightarrow \beta\) 有穷多次运用收缩和交换规则得到的
- 对 \(\mathbf{G0ip}\) 中任意推导 \(\mathcal{D}\),存在最小自然数 \(n>0\) 使得 \(\mathcal{D}\) 中每个矢列都是 \(n-\)度矢列,记该自然数为 \(d(\mathcal{D})\)
- 对任意矢列 \(\Gamma \Rightarrow \beta\),存在 \(\Gamma \Rightarrow \beta\) 的 \(1-\)度收缩矢列 \(\Gamma^{*} \Rightarrow \beta^{*}\) 使得 \(\mathbf{G0ip}^{\sharp} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\mathbf{G0ip}^{\sharp} \vdash \Gamma^{*} \Rightarrow \beta^{*}\)
- 设 \(\mathbf{G0ip}^{\sharp} \vdash \Gamma \Rightarrow \beta\),若 \(\Gamma^{*} \Rightarrow \beta^{*}\) 是 \(\Gamma \Rightarrow \beta\) 的 \(1-\)度收缩矢列,则存在 \(\Gamma^{*} \Rightarrow \beta^{*}\) 的无重复推导 \(\mathcal{D}\) 使得 \(d(\mathcal{D}) \leqslant 3\)
- \(\mathbf{G0cp}\) 与 \(\mathbf{G0ip}\) 是一致的,即存在一个矢列在其中不可推导
- 称矢列 \(\Gamma \Rightarrow \Delta\) 是 \(n-\)度矢列当且仅当 \(\Gamma\) 中每个公式至多出现 \(n\) 次并且 \(\Delta\) 中每个公式至多出现 \(n\) 次
-
对任意结构 \(\Gamma=\alpha_{1}, \cdots, \alpha_{n}\),令 \(\operatorname{var}(\Gamma)= {\displaystyle \bigcup_{1 \leqslant i \leqslant n} \operatorname{var}\left(\alpha_{i}\right)}\) 为 \(\Gamma\) 中所有命题变元的多重集,称作多重公式集.设 \(\uplus\) 是多重集的并集
-
设 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma \Rightarrow \Delta\),对 \(\Gamma \Rightarrow \Delta\) 的任意划分 \(\left(\Gamma_{1}: \Delta_{1}\right) ;\left(\Gamma_{2}: \Delta_{2}\right)\),即 \(\Gamma_{1} \uplus \Gamma_{2}=\Gamma\) 且 \(\Delta_{1} \uplus \Delta_{2}=\Delta\),若有
- \(\mathbf{G0cp}^{\sharp} \vdash \Gamma_{1} \Rightarrow \Delta_{1}, \gamma\)
- \(\mathbf{G0cp}^{\sharp} \vdash \gamma, \Gamma_{2} \Rightarrow \Delta_{2}\)
- 变元条件:\(\operatorname{var}(\gamma) \subseteq \operatorname{var}\left(\Gamma_{1}, \Delta_{1}\right) \cap \operatorname{var}\left(\Gamma_{2}, \Delta_{2}\right)\)
则称公式 \(\gamma\) 是 \(\left(\Gamma_{1}: \Delta_{1}\right) ; \left(\Gamma_{2}: \Delta_{2}\right)\) 的插值
- 如果 \(\mathbf{G0cp}^{\sharp} \vdash \Gamma \Rightarrow \Delta\) 且 \(\left(\Gamma_{1}: \Delta_{1}\right) ;\left(\Gamma_{2}: \Delta_{2}\right)\) 是 \(\Gamma \Rightarrow \Delta\) 的划分,则存在公式 \(\gamma\) 使得 \(\gamma\) 是 \(\left(\Gamma_{1}: \Delta_{1}\right) ;\left(\Gamma_{2}: \Delta_{2}\right)\) 的插值
- 如果 \(\vdash_{\mathbf{HK}} \alpha \rightarrow \beta\),那么存在公式 \(\gamma\) 使得
- \(\vdash_{\mathbf{HK}} \alpha \rightarrow \gamma\)
- \(\vdash_{\mathbf{H K}} \gamma \rightarrow \beta\)
- \(\operatorname{var}(\gamma) \subseteq \operatorname{var}(\alpha) \cap \operatorname{var}(\beta)\)
-
设 \(\mathbf{G0ip}^{\sharp} \vdash \Gamma \Rightarrow \beta\),对 \(\Gamma\) 的任意划分 \(\left(\Gamma_{1}: \Gamma_{2}\right)\),即 \(\Gamma_{1} \uplus \Gamma_{2}=\Gamma\),若有
- \(\mathbf{G0ip}^{\sharp} \vdash \Gamma_{1} \Rightarrow \gamma\)
- \(\mathbf{G0ip}^{\sharp} \vdash \gamma, \Gamma_{2} \Rightarrow \beta\)
- 变元条件:\(\operatorname{var}(\gamma) \subseteq \operatorname{var}\left(\Gamma_{1}\right) \cap \operatorname{var}\left(\Gamma_{2}, \beta\right)\)
称公式 \(\gamma\) 是 \(\left(\Gamma_{1}: \Gamma_{2}\right)\) 的插值
- 如果 \(\mathbf{G0ip} \vdash \Gamma \Rightarrow \beta\) 并且 \(\left(\Gamma_{1}: \Gamma_{2}\right)\) 是 \(\Gamma \Rightarrow \beta\) 的划分,那么存在公式 \(\gamma\) 使得 \(\gamma\) 是 \(\left(\Gamma_{1}: \Gamma_{2}\right)\) 的插值
- 如果 \(\vdash_{\mathbf{HJ}} \alpha \rightarrow \beta\),那么存在公式 \(\gamma\) 使得
- \(\vdash_{\mathbf{HJ}} \alpha \rightarrow \gamma\)
- \(\vdash_{\mathbf{HJ}} \gamma \rightarrow \beta\)
- \(\operatorname{var}(\gamma) \subseteq \operatorname{var}(\alpha) \cap \operatorname{var}(\beta)\)
-
3.2.2 G1 型演算
\(\mathbf{G1}\) 允许使用多重公式集作为公式结构
-
矢列演算 \(\mathbf{G1cp}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \Delta, \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\)
-
结构规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\Rightarrow\!\text{w})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha, \alpha$} \RightLabel{ $(\Rightarrow\!\text{c})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} } \]
\(\mathbf{G1cp} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G1cp}\) 中可推导
-
对任意公式结构 \(\Gamma\) 和 \(\Delta, \mathbf{G0cp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\mathbf{G1cp} \vdash \Gamma \Rightarrow \Delta\)
- 对任意矢列 \(\Gamma \Rightarrow \Delta\) 和 \(n \geqslant 0\),如果 \(\mathbf{G1cp} \vdash \Gamma \Rightarrow \Delta, \perp^{n}\),那么 \(\mathbf{G1cp} \vdash \Gamma \Rightarrow \Delta\)
-
在 \(\mathbf{G1cp}\) 中,对 \(k_{1}, k_{2} \geqslant 0\),以下扩展式切割规则可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha^{k_{1}}$} \AxiomC{$\alpha^{k_{2}}, \Sigma \Rightarrow \Theta$} \RightLabel{ $(\text{ECut})$} \BinaryInfC{$\Gamma, \Sigma \Rightarrow \Delta, \Theta$} \end{prooftree} \]
-
-
矢列演算 \(\mathbf{G1ip}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \beta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \chi$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\)
-
结构规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} } \]
\(\mathbf{G1ip} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G1ip}\) 中可推导
-
对任意公式结构 \(\Gamma\),\(\mathbf{G0ip} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\mathbf{G1ip} \vdash \Gamma^{s} \Rightarrow \beta\)
- 如果 \(\mathbf{G1ip} \vdash \Gamma \Rightarrow \perp\),那么 \(\mathbf{G1ip} \vdash \Gamma \Rightarrow \beta\)
-
在 \(\mathbf{G1ip}\) 中,对 \(k \geqslant 0\),以下扩展式切割规则可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\alpha^{k}, \Sigma \Rightarrow \beta$} \RightLabel{ $(\text{ECut})$} \BinaryInfC{$\Gamma, \Sigma \Rightarrow \beta$} \end{prooftree} \]
-
-
\(\mathbf{G1cp}\) 与 \(\mathbf{G1ip}\) 是可判定的且具有插值性质
3.2.3 G2 型演算
-
矢列演算 \(\mathbf{G2cp}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \Delta, \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\)
-
结构规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha, \alpha$} \RightLabel{ $(\Rightarrow\!\text{c})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} } \]
\(\mathbf{G2cp} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G2cp}\) 中可推导
-
对任意矢列 \(\Gamma \Rightarrow \Delta\),\(\mathbf{G1cp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\mathbf{G2cp} \vdash \Gamma \Rightarrow \Delta\)
-
以下弱化规则在 \(\mathbf{G2cp}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\Rightarrow\!\text{w})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \] -
以下切割规则在 \(\mathbf{G2cp}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\alpha, \Sigma \Rightarrow \Theta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Sigma \Rightarrow \Delta, \Theta$} \end{prooftree} \]
-
-
-
矢列演算 \(\mathbf{G2ip}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \beta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \chi$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\)
-
结构规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} } \]
\(\mathbf{G2ip} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G2ip}\) 中可推导
-
对任意矢列 \(\Gamma \Rightarrow \beta\),\(\mathbf{G1ip} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\mathbf{G2ip} \vdash \Gamma \Rightarrow \beta\)
-
以下弱化规则在 \(\mathbf{G2ip}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \] -
以下切割规则在 \(\mathbf{G2ip}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\alpha, \Delta \Rightarrow \beta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Delta \Rightarrow \beta$} \end{prooftree} \]
-
-
3.2.4 G3 型演算
-
矢列演算 \(\mathbf{G3cp}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \Delta, \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\).\(\mathbf{G3cp} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G3cp}\) 中可推导
-
若对任意自然数 \(k \geqslant 0\),\(\mathbf{G3cp} \vdash_{k} \Gamma_{i} \Rightarrow \alpha_{i} \ (1 \leqslant i \leqslant n)\) 蕴含 \(\mathbf{G3cp} \vdash_{k} \Gamma_{0} \Rightarrow \alpha_{0}\),则称 \(\text{R}\) 在 \(\mathbf{G3cp}\) 中保持高度可允许
-
以下弱化规则在 \(\mathbf{G3cp}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\Rightarrow\!\text{w})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \] -
以下收缩规则在 \(\mathbf{G3cp}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha, \alpha$} \RightLabel{ $(\Rightarrow\!\text{c})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \] -
以下切割规则在 \(\mathbf{G3cp}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\alpha, \Sigma \Rightarrow \Theta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Sigma \Rightarrow \Delta, \Theta$} \end{prooftree} \]
-
-
对任意矢列 \(\Gamma \Rightarrow \Delta\),\(\mathbf{G2cp} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\mathbf{G3cp} \vdash \Gamma \Rightarrow \Delta\)
- 对任意多重集 \(\Gamma\) 和 \(\Delta\) 及公式 \(\alpha\),\(\mathbf{G3cp} \vdash \alpha, \Gamma \Rightarrow \Delta, \alpha\)
- 如果 \(\mathbf{G3cp} \vdash \Gamma \Rightarrow \Sigma, \perp\),那么 \(\mathbf{G3cp} \vdash \Gamma \Rightarrow \Sigma, \Theta\)
-
-
矢列演算 \(\mathbf{G3ip}\) 由公理模式与矢列规则组成
-
公理模式
- \(\alpha \Rightarrow \alpha \ \text{(Id)}\)
- \(\perp \Rightarrow \ (\bot)\)
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_i, \Gamma \Rightarrow \beta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \chi$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha_i$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \chi$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \chi$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \alpha \to \beta$} \end{prooftree} } \]其中 \(i = 1, 2\).\(\mathbf{G3ip} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G3ip}\) 中可推导
-
若对任意自然数 \(k \geqslant 0\),\(\mathbf{G3ip} \vdash_{k} \Gamma_{i} \Rightarrow \alpha_{i} \ (1 \leqslant i \leqslant n)\) 蕴含 \(\mathbf{G3ip} \vdash_{k} \Gamma_{0} \Rightarrow \alpha_{0}\),则称 \(\text{R}\) 在 \(\mathbf{G3ip}\) 中保持高度可允许
-
以下弱化规则在 \(\mathbf{G3ip}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \] -
以下收缩规则在 \(\mathbf{G3ip}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \] -
以下切割规则在 \(\mathbf{G3ip}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\alpha, \Delta \Rightarrow \beta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Delta \Rightarrow \beta$} \end{prooftree} \]
-
-
对任意矢列 \(\Gamma \Rightarrow \beta\),\(\mathbf{G2ip} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\mathbf{G3ip} \vdash \Gamma \Rightarrow \beta\)
- 对任意多重公式集 \(\Gamma\) 和公式 \(\alpha\),\(\mathbf{G3ip} \vdash \alpha, \Gamma \Rightarrow \alpha\)
- 如果 \(\mathbf{G3ip} \vdash \Gamma \Rightarrow \perp\),那么 \(\mathbf{G3ip} \vdash \Gamma \Rightarrow \beta\)
-
-
\(\mathbf{G3cp}\) 与 \(\mathbf{G3ip}\) 是可判定的
-
矢列演算 \(\mathbf{G3ipEa}\) 从 \(\mathbf{G3ip}\) 上增加以下规则得来
\[ \begin{prooftree} \AxiomC{$p, \Gamma \Rightarrow \beta$} \AxiomC{$\neg p, \Gamma \Rightarrow \beta$} \RightLabel{ (Ea)} \BinaryInfC{$\Gamma \Rightarrow \beta$} \end{prooftree} \]\(\mathbf{G3ipEa} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G3ipEa}\) 中可推导
-
以下弱化规则与收缩规则在 \(\mathbf{G3ipEa}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \] -
以下切割规则与排中律规则在 \(\mathbf{G3ip}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\alpha, \Delta \Rightarrow \beta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Delta \Rightarrow \beta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \beta$} \AxiomC{$\neg \alpha, \Gamma \Rightarrow \beta$} \RightLabel{ (Em)} \BinaryInfC{$\Gamma \Rightarrow \beta$} \end{prooftree} \] -
\(\text{Glivenko}\) 嵌入定理:对任意公式 \(\alpha\),\(\mathbf{G3ipEa} \vdash \Rightarrow \alpha\) 当且仅当 \(\mathbf{G3ip} \vdash \Rightarrow \neg \neg \alpha\),即 \(\vdash_{\mathbf{HK}} \alpha\) 当且仅当 \(\vdash_{\mathbf{HJ}} \neg \neg \alpha\)
- \(\mathbf{G3ipEa} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\Gamma \vDash \beta\)
- 若 \(\mathbf{G3ipEa} \vdash \Gamma \Rightarrow \beta\),那么在 \(\mathbf{G3ipEa}\) 中存在 \(\Gamma \Rightarrow \beta\) 的标准推导 \(\mathcal{D}\) 使得 \(\mathcal{D}\) 中应用 \(\text{Ea}\) 得到的矢列后件都是 \(\beta\)
- 若 \(\mathbf{G3ipEa} \vdash \Gamma \Rightarrow \neg \beta\),那么 \(\mathbf{G3ip} \vdash \Gamma \Rightarrow \neg \beta\)
-
3.2.5 G4 型演算
-
矢列演算 \(\mathbf{G4ip}\) 用以下规则替换 \(\mathbf{G3ip}\) 的规则 \(\rightarrow \Rightarrow\) 得来
\[ \displaylines{ \begin{prooftree} \AxiomC{$p, \alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(0\!\rightarrow \Rightarrow)$} \UnaryInfC{$p, p \rightarrow \alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\gamma_{1} \rightarrow\left(\gamma_{2} \rightarrow \alpha\right), \Gamma \Rightarrow \beta$} \RightLabel{ $(\wedge\!\rightarrow \Rightarrow)$} \UnaryInfC{$\left(\gamma_{1} \wedge \gamma_{2}\right) \rightarrow \alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\gamma_{1} \rightarrow \alpha, \gamma_{2} \rightarrow \alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\vee\!\rightarrow \Rightarrow)$} \UnaryInfC{$\left(\gamma_{1} \vee \gamma_{2}\right) \rightarrow \alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\gamma_{1}, \gamma_{2} \rightarrow \alpha, \Gamma \Rightarrow \gamma_{2}$} \AxiomC{$\alpha, \Gamma \Rightarrow \beta$} \RightLabel{ $(\rightarrow \rightarrow \Rightarrow)$} \BinaryInfC{$\left(\gamma_{1} \rightarrow \gamma_{2}\right) \rightarrow \alpha, \Gamma \Rightarrow \beta$} \end{prooftree} } \]\(\mathbf{G4ip} \vdash \Gamma \Rightarrow \Delta\) 表示矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G4ip}\) 中可推导
- 规则 \(0\!\rightarrow \Rightarrow, \wedge\!\rightarrow \Rightarrow, \vee\!\rightarrow \Rightarrow, \rightarrow \rightarrow \Rightarrow\) 在 \(\mathbf{G3ip}\) 中可允许
-
以下弱化规则在 \(\mathbf{G4ip}\) 中保持高度可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \beta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \beta$} \end{prooftree} \] -
以下收缩规则与切割规则在 \(\mathbf{G4ip}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \alpha$} \AxiomC{$\alpha, \Delta \Rightarrow \beta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Delta \Rightarrow \beta$} \end{prooftree} \]
-
对任意矢列 \(\Gamma \Rightarrow \beta\),\(\mathbf{G3ip} \vdash \Gamma \Rightarrow \beta\) 当且仅当 \(\mathbf{G4ip} \vdash \Gamma \Rightarrow \beta\)
3.2 一阶逻辑矢列演算
-
一阶逻辑矢列演算 \(\mathbf{G3c}\) 由公理模式与矢列规则组成
-
公理模式
- \(R t_{1} \cdots R t_{n}, \Gamma \Rightarrow \Delta, R t_{1} \cdots R t_{n} \ \text{(Id)}\)
- \(\perp, \Gamma \Rightarrow \Delta \ (\bot)\)
矢列规则
-
联结词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha_1, \alpha_2, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\wedge\!\Rightarrow)$} \UnaryInfC{$\alpha_1 \wedge \alpha_2, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow\!\wedge)$} \BinaryInfC{$\Gamma \Rightarrow \Delta, \alpha \wedge \beta$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\vee\!\Rightarrow)$} \BinaryInfC{$\alpha \vee \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha_1, \alpha_2$} \RightLabel{ $(\Rightarrow\!\vee)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha_1 \vee \alpha_2$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\beta, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\rightarrow \Rightarrow)$} \BinaryInfC{$\alpha \to \beta, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\alpha, \Gamma \Rightarrow \Delta, \beta$} \RightLabel{ $(\Rightarrow \rightarrow)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha \to \beta$} \end{prooftree} } \] -
量词规则
\[ \displaylines{ \begin{prooftree} \AxiomC{$\alpha(t / x), \forall x \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\forall\!\Rightarrow)$} \UnaryInfC{$\forall x \alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha(y / x)$} \RightLabel{ $(\Rightarrow\!\forall)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \forall x \alpha$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha(y / x), \Gamma \Rightarrow \Delta$} \RightLabel{ $(\exists\!\Rightarrow)$} \UnaryInfC{$\exists x \alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \exists x \alpha, \alpha(t / x)$} \RightLabel{ $(\Rightarrow\!\exists)$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \exists x \alpha$} \end{prooftree} } \]在 \(\Rightarrow\!\forall\) 中,\(y \notin \operatorname{FV}(\Gamma, \Delta, \forall x \alpha)\);在 \(\exists\!\Rightarrow\) 中,\(y \notin \operatorname{FV}(\exists x \alpha, \Gamma, \Delta)\)
\(\mathbf{G3c} \vdash \Gamma \Rightarrow \Delta\) 表示 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G3c}\) 中可推导
-
对任意自然数 \(n \geqslant 0\),若 \(\mathbf{G3c} \vdash_{n} \Gamma \Rightarrow \Delta\),则 \(\mathbf{G3c} \vdash_{n} \Gamma(t / x) \Rightarrow \Delta(t / x)\)
-
以下弱化规则与收缩规则在 \(\mathbf{G3c}\) 中保持高度可允许
\[ \displaylines{ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{w}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta$} \RightLabel{ $(\Rightarrow\!\text{w})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} \\[0.5em] \begin{prooftree} \AxiomC{$\alpha, \alpha, \Gamma \Rightarrow \Delta$} \RightLabel{ $(\text{c}\!\Rightarrow)$} \UnaryInfC{$\alpha, \Gamma \Rightarrow \Delta$} \end{prooftree} \quad \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha, \alpha$} \RightLabel{ $(\Rightarrow\!\text{c})$} \UnaryInfC{$\Gamma \Rightarrow \Delta, \alpha$} \end{prooftree} } \] -
以下切割规则在 \(\mathbf{G3c}\) 中可允许
\[ \begin{prooftree} \AxiomC{$\Gamma \Rightarrow \Delta, \alpha$} \AxiomC{$\alpha, \Sigma \Rightarrow \Theta$} \RightLabel{ (Cut)} \BinaryInfC{$\Gamma, \Sigma \Rightarrow \Delta, \Theta$} \end{prooftree} \]
-
-
对多重公式集 \(\Gamma=\alpha_{1}, \cdots, \alpha_{n}\),若对所有 \(1 \leqslant i \leqslant n\) 都有 \(\alpha_{i}^{\flat}\) 是从 \(\alpha_{i}\) 使用不在 \(\Gamma\) 中出现的变元进行字母变换得到的公式,则称 \(\Gamma^{\flat}=\alpha_{1}^{\flat}, \cdots, \alpha_{n}^{\flat}\) 为 \(\Gamma\) 的字母变换
- 在 \(\mathbf{G3c}\) 中,一个推导 \(\mathcal{D}^{\flat}\) 称为 \(\mathcal{D}\) 的字母变换当且仅当 \(\mathcal{D}^{\flat}\) 中每个多重集都是 \(\mathcal{D}\) 中相应多重集的字母变换
- 矢列 \(\Gamma \Rightarrow \Delta\) 在 \(\mathbf{G3c}\) 中的推导 \(\mathcal{D}\) 可变换为 \(\Gamma^{\flat} \Rightarrow \Delta^{\flat}\) 的推导 \(\mathcal{D}^{\flat}\),其中 \(\Gamma^{\flat}, \Delta^{\flat}, \mathcal{D}^{\flat}\) 分别是 \(\Gamma, \Delta, \mathcal{D}\) 的字母变换且 \(|\mathcal{D}|= |\mathcal{D}^{\flat}|\)
- 对任意多重公式集 \(\Gamma\) 和 \(\Delta\),\(\mathbf{G3c} \vdash \Gamma \Rightarrow \Delta\) 当且仅当 \(\vdash_{\mathbf{H}_{1}} \bigwedge \Gamma \to \bigvee \Delta\)