跳转至

1 测度论

1.1 可测性与测度

1.1.1 可测空间

  1. 可测空间:设 \(\Omega\) 为集合,\(\mathscr{F}\)\(\Omega\) 的子集构成的 \(\sigma\) 域,则 \((\Omega, \mathscr{F})\) 称为可测空间.\(\mathscr{F}\) 中任一集合都称为 \(\mathscr{F}\) 可测集,简称可测集
  2. 乘积空间:若 \(\left(\Omega_{i}, \mathscr{F}_{i}\right), 1 \leqslant i \leqslant n\)\(n\) 个可测空间,称 \(\Omega=\left\{\left(\omega_{1}, \cdots, \omega_{n}\right): \omega_{i} \in \Omega_{i}, 1 \leqslant i \leqslant n\right\}\) 为乘积空间,记为 \({\displaystyle \Omega=\prod_{i} \Omega_{i}}\)

    1. 矩形集:对 \(A_{i} \subseteq \Omega_{i}, 1 \leqslant i \leqslant n\),集合 \(A=\left\{\left(\omega_{1}, \cdots, \omega_{n}\right): \omega_{i} \in A_{i}, 1 \leqslant i \leqslant n\right\}\) 称为矩形集,记为 \({\displaystyle \prod_{i=1}^{n} A_i}\).特别地,当每个 \(A_i \in \mathscr{F}_i\) 时,\({\displaystyle A = \prod_{i=1}^{n} A_i}\) 又称为可测矩形
    2. \(\left(\Omega_{i}, \mathscr{F}_{i}\right), 1 \leqslant i \leqslant n\)\(n\) 个可测空间,\({\displaystyle \Omega=\prod_{i=1}^{n}} \Omega_{i}\)\(\mathscr{C}\) 表示 \(\Omega\) 中可测矩形全体,则 \(\mathscr{C}\) 是一个半域,而互不相交的可测矩形的有限并全体 \(\mathscr{A}\) 就是一个域

    \(\left\{\left(\Omega_{\alpha}, \mathscr{F}_{\alpha}\right)\right\}_{\alpha \in J}\) 为一族可测空间,称 \(\Omega=\left\{\left(\omega_{\alpha}, \alpha \in J\right): \omega_{\alpha} \in \Omega_{\alpha}, \alpha \in J\right\}\)\(\left(\omega_{\alpha}, \alpha \in J\right)\) 的乘积空间,记为 \(\Omega={\displaystyle \prod_{\alpha \in J}} \Omega_{\alpha}\)

    1. \(I\)\(J\) 的有限子集,对 \(A_{\alpha} \in \mathscr{F}_{\alpha}, \alpha \in I\)\(B=\left\{\left(\omega_{\alpha}, \alpha \in J\right) \in \Omega: \omega_{\alpha} \in A_{\alpha}, \alpha \in I\right\}\).称 \(B\) 为有限维基底可测矩形柱,简称有限维矩形柱,\({\displaystyle \prod_{\alpha \in I}} A_{\alpha}\) 称为 \(B\) 的底
    2. \(\mathscr{C}=\left\{B: B \textsf{ 为以 } {\displaystyle \prod_{\alpha \in I}} A_{\alpha} \textsf{ 为底的矩形柱,} A_{\alpha} \in \mathscr{F}_{\alpha}, \alpha \in \textsf{有限 } I \subseteq J\right\}\),其中 \(I\) 取遍 \(J\) 的一切有限子集,即 \(\mathscr{C}\) 表示有限维基底可测矩形柱全体,则 \(\mathscr{C}\) 是半域
  3. 乘积可测空间:若 \(\left(\Omega_{i}, \mathscr{F}_{i}\right), 1 \leqslant i \leqslant n\)\(n\) 个可测空间,\(\mathscr{C}\) 表示 \(\Omega={\displaystyle \prod_{i=1}^{n}} \Omega_{i}\) 中可测矩形全体.在 \(\Omega\) 上,\(\mathscr{F} = \sigma(\mathscr{C})\) 称为乘积 \(\sigma\) 域,并记 \(\mathscr{F} = {\displaystyle \prod_{i=1}^{n}} \mathscr{F}_i\).又 \((\Omega, \mathscr{F})\) 称为乘积可测空间,记为 \((\Omega, \mathscr{F})={\displaystyle \prod_{i=1}^{n}}\left(\Omega_{i}, \mathscr{F}_{i}\right)\)

    1. \(\left(\Omega_{i}, \mathscr{F}_{i}\right), 1 \leqslant i \leqslant n\)\(n\) 个可测空间,\(1 \leqslant m \leqslant n\)
      1. \({\displaystyle \prod_{i=1}^{n}} \Omega_{i}=\left({\displaystyle \prod_{i=1}^{m}} \Omega_{i}\right) \times\left({\displaystyle \prod_{i=m+1}^{n}} \Omega_{i}\right)\)
      2. \({\displaystyle \prod_{i=1}^{n}} \mathscr{F}_{i}=\left({\displaystyle \prod_{i=1}^{m}} \mathscr{F}_{i}\right) \times\left({\displaystyle \prod_{i=m+1}^{n}} \mathscr{F}_{i}\right)\)
      3. \({\displaystyle \prod_{i=1}^{n}}\left(\Omega_{i}, \mathscr{F}_{i}\right)=\left({\displaystyle \prod_{i=1}^{m}}\left(\Omega_{i}, \mathscr{F}_{i}\right)\right) \times\left({\displaystyle \prod_{i=m+1}^{n}}\left(\Omega_{i}, \mathscr{F}_{i}\right)\right)\)
    2. \(\left(\Omega_{i}, \mathscr{F}_{i}\right), 1 \leqslant i \leqslant n\)\(n\) 个可测空间,\((\Omega, \mathscr{F})={\displaystyle \prod_{i=1}^{n}} \left(\Omega_{i}, \mathscr{F}_{i}\right)\).则对任一 \(A \in \mathscr{F}\) 及任意固定的 \(\left(\omega_{1}, \cdots, \omega_{m}\right)\),截口集 \(A\left(\omega_{1}, \cdots, \omega_{m}\right)=\left\{\left(\omega_{m+1}, \cdots, \omega_{n}\right):\left(\omega_{1}, \cdots, \omega_{n}\right) \in A\right\} \in {\displaystyle \prod_{i=m+1}^{n}} \mathscr{F}_{i}\)

    \(\Omega={\displaystyle \prod_{\alpha \in J}} \Omega_{\alpha}\) 上有 \(\mathscr{C}=\left\{B: B \textsf{ 为以 } {\displaystyle \prod_{\alpha \in I}} A_{\alpha} \textsf{ 为底的矩形柱,} A_{\alpha} \in \mathscr{F}_{\alpha}, \alpha \in \textsf{有限 } I \subseteq J\right\}\),称 \(\mathscr{F}=\sigma(\mathscr{C})\)\(\left\{\mathscr{F}_{\alpha}\right\}_{\alpha \in J}\) 的乘积 \(\sigma\) 域,记为 \(\mathscr{F}={\displaystyle \prod_{\alpha \in J}} \mathscr{F}_{\alpha}\).而 \((\Omega, \mathscr{F})\) 称为乘积可测空间,记为 \((\Omega, \mathscr{F}) ={\displaystyle \prod_{\alpha \in J}} \left(\Omega_{\alpha}, \mathscr{F}_{\alpha}\right)\)

    1. \(\Omega\) 中,若 \(I\)\(J\) 的任意子集,\(A \subseteq \Omega_{I}={\displaystyle \prod_{\alpha \in I}} \Omega_{\alpha}\),则 \(B=A \times {\displaystyle \prod_{\alpha \in J - I}} \Omega_{\alpha}=\left\{\left(\omega_{\alpha}, \alpha \in J\right) \in \Omega:\left(\omega_{\alpha}, \alpha \in I\right) \in A\right\}\) 称为 \(\Omega\) 中的柱集,\(A\) 称为 \(B\) 的底.当 \(A \in {\displaystyle \prod_{\alpha \in I}} \mathscr{F}_{\alpha}\),柱集 \(B\) 称为可测的.特别地,当 \(I\) 为有限指标集时,\(B\) 称为有限维基底可测柱集;当 \(I\) 为可数指标集时,\(B\) 称为可数维基底可测柱集,凡分别简称为有限维柱集或可数维柱集
    2. 假设 \(\left\{\left(\Omega_{\alpha}, \mathscr{F}_{\alpha}\right)\right\}_{\alpha \in J}\) 为一族可测空间,\(J\) 为无限指标集,\((\Omega, \mathscr{F})= {\displaystyle \prod_{\alpha \in J}} \left(\Omega_{\alpha}, \mathscr{F} \alpha\right)\),又 \(\mathscr{G}\) 表示 \(\Omega\) 中可数维基底可测柱集全体,则有 \(\mathscr{F}=\mathscr{G}\) 成立
    3. \(\left\{\left(E_{i}, \mathscr{T}_{i}\right)\right\}_{i \in I}\) 为至多可数个具有可数基的拓扑空间,\((E, \mathscr{T})={\displaystyle \prod_{i \in I}}\left(E_{i}, \mathscr{T}_{i}\right)\) 为乘积拓扑空间,则有

      1. \(\mathscr{B}_{E} ={\displaystyle \prod_{i \in I}} \mathscr{B}_{E_{i}}\)
      2. \(\left(E, \mathscr{B}_{E}\right) ={\displaystyle \prod_{i \in I}}\left(E_{i}, \mathscr{B}_{E_{i}}\right)\)

      其中 \(\mathscr{B}_{E_{i}}=\sigma\left(\mathscr{T}_{i}\right), i \in I, \mathscr{B}_{E}=\sigma(\mathscr{T})\).特别地,有 \(\left(\mathbf{R}^{n}, \mathscr{B}^{n}\right)=\small \underbrace{\normalsize (\mathbf{R}, \mathscr{B}) \times (\mathbf{R}, \mathscr{B}) \times \cdots \times(\mathbf{R}, \mathscr{B})}_{\normalsize n} \normalsize\),其中 \(\mathscr{B}^{n}\) 也可看成为由可测矩形或由有理端点开矩形全体生成的 \(\sigma\)

    4. 无限维乘积可测空间:设 \(T\) 为任意指标集,\(\left\{\left(\Omega_{t}, \mathscr{F}_{t}\right): t \in T\right\}\) 为一族可测空间 \({\displaystyle \Omega=\underset{t \in T}{\prod} \Omega_{t}, \ \mathscr{F}=\underset{t \in T}{\prod} \mathscr{F}_{t}}\).又 \(T_{1} \subseteq T\)\(T_{1}\)\(T\) 的任一子集.记 \({\displaystyle \Omega_{T_{1}}=\underset{t \in T_{1}}{\prod} \Omega_{t}, \ \mathscr{F}_{T_{1}}=\underset{t \in T_{1}}{\prod} \mathscr{F}_{t}}\),则 \(\Omega=\Omega_{T}, \mathscr{F}=\mathscr{F}_{T}\).对 \(A \in \mathscr{F}_{T_{1}}\)\({\displaystyle B_{1}=\left\{\left(\omega_{t}, t \in T\right) \in \Omega_{T}:\left(\Omega_{\alpha}, \alpha \in T_{1}\right) \in A\right\}}\) 并称 \(B_{1}\)\(\Omega\) 中以 \(A\) 为基底的柱集.对 \(T_{1} \subseteq T_{2} \subseteq T\)\({\displaystyle B_{2}=\left\{\left(\omega_{t}, t \in T_{2}\right) \in \Omega_{T_{2}}:\left(\omega_{\alpha}, \alpha \in T_{1}\right) \in A\right\}}\),称 \(B_{2}\)\(\Omega_{T_{2}}\) 中以 \(A\) 为基底的柱集,并以 \(\overline{\mathscr{F}}_{T_{1}}\)\(\overline{\mathscr{F}}_{T_{1}}^{T_{2}}\) 分别表示基底在 \(\mathscr{F}_{T_{1}}\)\(\Omega\)\(\Omega_{T_{2}}\) 中的柱集全体

      1. \(\mathscr{C}\) 表示 \(\Omega\) 中基底为有限维可测矩形的柱集全体,\({\displaystyle \mathscr{A}=\bigcup_{T_{1} \subseteq T} \overline{\mathscr{F}}_{T_{1}}}\) 表示 \(\Omega\) 中有限维可测基底的柱集全体,其中 \(T_1\) 有限.则 \(\mathscr{C} \subseteq \mathscr{A}\),且 \(\mathscr{A}\) 为域,\(\sigma(\mathscr{C})=\sigma(\mathscr{A})=\mathscr{F}\)
      2. \(T_{1} \subseteq T_{2} \subseteq T\),规定 \(\Omega_{T_{2}}\)\(\Omega_{T_{1}}\) 的映射 \(\pi_{T_{1}}^{T_{2}}\)\(\pi_{T_{1}}^{T_{2}}\left\{\omega_{t}: t \in T_{2}\right\}=\left\{\omega_{t}: t \in T_{1}\right\}\),则 \(\pi_{T_{1}}^{T_{2}}\)\(\Omega_{T_{2}}\)\(\Omega_{T_{1}}\) 的投影.对 \(A \in \mathscr{F}_{T_{1}}\),由于 \(\left(\pi_{T_{1}}^{T_{2}}\right)^{-1} A=A \times \Omega_{T_{2} - T_{1}}\),因此 \(\pi_{T_{1}}^{T_{2}}\)\(\left(\Omega_{T_{2}}, \mathscr{F}_{T_{2}}\right)\)\(\left(\Omega_{T_{1}}, \mathscr{F}_{T_{1}}\right)\) 的可测映射且 \(\left(\pi_{T_{1}}^{T_{2}}\right)^{-1} \mathscr{F}_{T_{1}}=\overline{\mathscr{F}}_{T_{1}}^{T_{2}}\)

1.1.2 可测映射

  1. 可测映射:设 \(\left(\Omega_{1}, \mathscr{F}_{1}\right),\left(\Omega_{2}, \mathscr{F}_{2}\right)\) 为可测空间,\(f: \Omega_{1} \to \Omega_{2}\).若对每个 \(A \in \mathscr{F}_{2}, f^{-1}[A] \in \mathscr{F}_{1}\),即 \(f^{-1}\left[\mathscr{F}_{2}\right] \subseteq \mathscr{F}_{1}\),则称 \(f\)\(\left(\Omega_{1}, \mathscr{F}_{1}\right)\)\(\left(\Omega_{2}, \mathscr{F}_{2}\right)\) 的可测映射,记为 \(f \in \mathscr{F}_{1} / \mathscr{F}_{2}\),或在 \(\mathscr{F}_{2}\) 不引起混淆时简记为 \(f \in \mathscr{F}_{1}\).记 \(\sigma(f)=\sigma_{\Omega_{1}}(f)=f^{-1}\left[\mathscr{F}_{2}\right]\),称它为由 \(f\) 生成的 \(\sigma\)
    1. \(f\)\(\Omega_{1}\)\(\Omega_{2}\) 的映射,\(\mathscr{C}\)\(\mathcal{P}\left(\Omega_{2}\right)\) 的子类,则 \(\sigma_{\Omega_{1}}\left(f^{-1}[\mathscr{C}]\right)=f^{-1}\left[\sigma_{\Omega_{2}}(\mathscr{C})\right]\)
    2. \(\left(\Omega_{1}, \mathscr{F}_{1}\right),\left(\Omega_{2}, \mathscr{F}_{2}\right)\) 为可测空间,\(\mathscr{C} \subseteq \mathcal{P}\left(\Omega_{2}\right)\),又 \(\mathscr{F}_{2}=\sigma(\mathscr{C})\),则 \(f \in \mathscr{F}_{1} / \mathscr{F}_{2}\) 的充要条件是 \(f^{-1}[\mathscr{C}] \subseteq \mathscr{F}_{1}\)
    3. \(\left(\Omega_{i}, \mathscr{F}_{i}\right) \ (i=1,2,3)\) 为可测空间,若 \(g\)\(\left(\Omega_{1}, \mathscr{F}_{1}\right)\)\(\left(\Omega_{2}, \mathscr{F}_{2}\right)\) 的可测映射,又 \(f\)\(\left(\Omega_{2}, \mathscr{F}_{2}\right)\)\(\left(\Omega_{3}, \mathscr{F}_{3}\right)\) 的可测映射,则 \(f \circ g\)\(\left(\Omega_{1}, \mathscr{F}_{1}\right)\)\(\left(\Omega_{3}, \mathscr{F}_{3}\right)\) 的可测映射
  2. 可测函数:由 \((\Omega, \mathscr{F})\)\(\left(\mathbf{R}, \mathscr{B}_{R}\right)\)\(\left(\widehat{\mathbf{R}}, \mathscr{B}_{\widehat{\mathbf{R}}}\right)\) 的可测映射称为可测函数
    1. \(\pi\)\(\mathscr{C} \subseteq \mathcal{P}(\Omega)\),又 \(\mathscr{H}\)\(\Omega\) 上的一个 \(\mathscr{L}\) 类,且 \(\mathscr{H} \supseteq \left\{I_{A}, A \in \mathscr{C}\right\}\),则 \(\mathscr{H}\) 包含 \(\Omega\) 上一切属于 \(\mathscr{L}\)\(\sigma(\mathscr{C})\) 可测函数
    2. \(\mathscr{F}_{1}\)\(\mathscr{F}\) 的子 \(\sigma\) 域,且 \(f \in \mathscr{F}_{1} / \mathscr{B}_{\widehat{\mathbf{R}}}\),则称 \(f\)\(\mathscr{F}_{1}\) 可测,记为 \(f \in \mathscr{F}_{1}\)
    3. \(f\)\(\left(\mathbf{R}^{n}, \mathscr{B}^{n}\right)\)\((\mathbf{R}, \mathscr{B})\) 的可测函数,则称 \(f\)\(n\)\(\text{Borel}\) 可测函数或简称 \(\text{Borel}\) 函数.可数维乘积空间 \(\left(\mathbf{R}^{\infty}, \mathscr{B}^{\infty}\right)\)\((\mathbf{R}, \mathscr{B})\) 的可测函数也称为 \(\text{Borel}\) 函数
    4. \((\Omega, \mathscr{F})=\left(\Omega_{1}, \mathscr{F}_{1}\right) \times\left(\Omega_{2}, \mathscr{F}_{2}\right)\) 为乘积空间,\(f\)\((\Omega, \mathscr{F})\)\(\left(\mathbf{R}, \mathscr{B}_{R}\right)\) 的可测函数,则对 \(\forall \omega_{1}^{0} \in \Omega_{1}, g\left(\omega_{2}\right)=f\left(\omega_{1}^{0}, \omega_{2}\right)\)\(\left(\Omega_{2}, \mathscr{F}_{2}\right)\)\(\left(\mathbf{R}, \mathscr{B}_{R}\right)\) 的可测函数

1.1.3 测度空间

  1. 集函数:设 \(\Omega\) 为一空间,\(\mathscr{C} \subseteq \mathcal{P}(\Omega), \mathscr{C}\) 上广义实值(可取 \(\pm \infty\))函数 \(\mu\) 称为集函数

    1. 若对每个 \(A \in \mathscr{C}\)\(|\mu(A)|<\infty\),则称 \(\mu\) 为有限的

      若对任意 \(A, B \in \mathscr{C}, A B=\varnothing\),且 \(A+B \in \mathscr{C}\),都有 \(\mu(A+B)=\mu(A)+\mu(B)\),则称 \(\mu\) 为有限可加的

    2. 若对每个 \(A \in \mathscr{C}\),存在 \(\left\{A_{n}\right\}_{n \geqslant 1} \in \mathscr{C}\),使 \(A=\bigcup_{n} A_{n}\),且对每个 \(n\) 都有 \(\left|\mu\left(A_{n}\right)\right|<\infty\),则称 \(\mu\)(在 \(\mathscr{C}\) 上)为 \(\sigma\) 有限的

      若对任意 \(\left\{A_{n}\right\}_{n \geqslant 1} \subseteq \mathscr{C}\) 都有 \(A_{i} A_{j}=\varnothing, i \neq j\),且 \({\displaystyle \sum_{i=1}^{\infty} A_{i} \in \mathscr{C}}\),则 \({\displaystyle \mu\left(\sum_{i=1}^{\infty} A_{i}\right)= \sum_{i=1}^{\infty} \mu\left(A_{i}\right)}\),则称 \(\mu\)(在 \(\mathscr{C}\) 上)为 \(\sigma\) 可加的

  2. 测度空间:若 \((\Omega, \mathscr{F})\) 为可测空间,\(\mu\)\(\mathscr{F}\) 上的测度,则 \((\Omega, \mathscr{F}, \mu)\) 称为测度空间

    1. 正测度:设 \(\Omega\) 为一空间,\(\mathscr{C} \subseteq \mathcal{P}(\Omega)\)\(\varnothing \in \mathscr{C}\).设 \(\mu\)\(\mathscr{C}\) 上的集函数,若它满足

      1. \(\mu(\varnothing)=0\)
      2. \(\mu\) 为非负的,即对每个 \(A \in \mathscr{C}\) 都有 \(\mu(A) \geqslant 0\)
      3. \(\mu\) 为可数可加的

      则称 \(\mu\) 为测度或正测度

    2. 超滤上的测度:设集合 \(\Omega\) 上的超滤 \(\mathscr F \subseteq \mathcal P(\Omega)\),则 \(\mathscr F\) 诱导出 \(\Omega\) 上的一个 \(\{0, 1\}-\)测度 \(\mu: \mathcal P(\Omega) \to 2\)

      \[ \mu(A) = \left\{\begin{aligned} & 1, &A \in \mathscr F \\ & 0, &A \notin \mathscr F \end{aligned}\right. \]
    3. 半域或域上的测度

      1. \(\mathscr{S}\)\(\Omega\) 上的半域,\(\mu\)\(\mathscr{S}\) 上的非负可加集函数,则存在 \(\mu\) 在由 \(\mathscr{S}\) 张成的域 \(\mathscr{A}(\mathscr{S})\) 上的唯一延拓 \(\nu\)\(\nu\)\(\mathscr{A}(\mathscr{S})\) 亦是非负可加的,且当 \(\mu\) 为可数可加时, \(\nu\) 亦可数可加
      2. \(\mu\) 为域 \(\mathscr{A} \subseteq \mathcal{P}(\Omega)\) 上的非负有限可加集函数
        1. \(\mu\) 是单调的,即当 \(A \subseteq B\), 必有 \(\mu(A) \leqslant \mu(B)\)
        2. \(\mu\) 是半可加的:若 \({\displaystyle A \subseteq \bigcup_{m=1}^{n} A_{m}}\),则 \({\displaystyle \mu(A) \leqslant \sum_{m=1}^{n} \mu\left(A_{m}\right)}\)
        3. 为使 \(\mu\)\(\sigma\) 可加的,当且仅当对每个递增序列 \(\left\{A_{n}\right\}\),只要 \({\displaystyle \bigcup_{n \geqslant 1} A_{n} \in \mathscr{A}}\),则有 \({\displaystyle \lim _{n \rightarrow \infty} \uparrow \mu\left(A_{n}\right)=\mu\left(\bigcup_{n} A_{n}\right)}\)
        4. \(\mu\)\(\sigma\) 可加的,则对每个递减序列 \(\left\{A_{n}\right\}\),只要 \({\displaystyle \bigcap_{n \geqslant 1} A_{n} \in \mathscr{A}}\),且存在 \(n_{0}\) 使 \(\mu\left(A_{n_{0}}\right)<\infty\),则有 \({\displaystyle \lim _{n \rightarrow \infty} \downarrow \mu\left(A_{n}\right)=\mu\left(\bigcap_{n} A_{n}\right)}\)
      3. \(\mu\)\(\sigma\) 域上的测度,\(\left\{A_{n}\right\}\)\(\mathscr{F}\) 中序列,则 \({\displaystyle \mu\left(\varliminf_{n \rightarrow \infty} A_{n}\right) \leqslant \varliminf_{n \rightarrow \infty} \mu\left(A_{n}\right)}\)
        1. 若对某个 \(n_{0}\)\({\displaystyle \mu\left(\bigcup_{n \geqslant n_{\mathrm{c}}} A_{n}\right)<\infty}\),则 \({\displaystyle \mu\left(\varlimsup_{n \rightarrow \infty} A_{n}\right) \geqslant \varlimsup_{n \rightarrow \infty} \mu\left(A_{n}\right)}\)
        2. \({\displaystyle \lim _{n \rightarrow \infty} A_{n}}\) 存在,且若对某个 \(n_{0}\)\({\displaystyle \mu\left(\bigcup_{n \geqslant n_{0}} A_{n}\right)<\infty}\) 时,有 \({\displaystyle \mu\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)}\) 成立
  3. 完备测度:设 \(\mu\)\(\sigma\)\(\mathscr{F}\) 上的测度,\(\mathscr{L}=\{A: A \in \mathscr{F}, \mu(A)=0\}\).又令 \(\mathscr{N}=\{N \in \mathcal{P}(\Omega): \textsf{ 存在 } A \in \mathscr{L} \textsf{,使 } N \subseteq A\}\),则 \(\mathscr{N}\) 中元素称为 \(\mu\) 可略集.若 \(\mathscr{N} \subseteq \mathscr{F}\),则称 \(\mu\)\(\mathscr{F}\) 上为完备的

    1. 可略集:若 \((\Omega, \mathscr{F}, P)\) 为完备概率空间,则 \(\mathscr{N}\) 中的元素简称为可略集
    2. 完备化扩张:若 \((\Omega, \mathscr{F}, \mu)\) 为测度空间,\(\mathscr{N}\)\(\mu\) 可略集全体

      1. \(\overline{\mathscr{F}}=\{A \cup N: A \in \mathscr{F}, N \in \mathscr{N}\}\)\(\sigma\)\(,\)\(\overline{F} \supseteq \mathscr{F}\)
      2. \(\overline{\mathscr{F}}\) 上,令 \(\overline{\mu}(A \cup N)=\mu(A)\),则 \(\overline{\mu}\)\(\overline{\mathscr{F}}\) 上测度,\(\overline{\mu} \upharpoonright {\mathscr{F}}=\mu\),且当 \(\mu\) 为概率测度时 \(\overline{\mu}\) 亦然
      3. \((\Omega, \overline{F}, \overline{\mu})\) 是完备测度空间,即 \(\overline{\mu}\)\(\mathscr{F}\) 上是完备的

      \((\Omega, \overline{F}, \overline{\mu})\)\((\Omega, \mathscr{F}, \mu)\) 的完备化扩张

1.1.4 广义测度

  1. 广义测度:可测空间 \((\Omega, \mathscr{F})\) 上取值于 \([-\infty,+\infty]\) 的集函数 \(\mu\) 若满足

    1. \(\mu(\varnothing)=0\)
    2. \({\displaystyle \mu\left(\sum_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)}\)

    \(\mu\) 称为广义测度或变号测度(有时也将广义测度称为测度,将测度称为正测度)

    1. \((\Omega, \mathscr{F}, \lambda)\) 是测度空间,\(f\) 为其上的(准)可积函数,则 \({\displaystyle \mu(A)=\int_{A} f(\omega) \lambda(\mathrm{d} \omega)}\) 是一个广义测度
    2. \(\mu\) 为广义测度,则其必定是有限可加的,即 \(\mu(A+B)=\mu(A)+\mu(B)\)
    3. \(\mu\)\((\Omega, \mathscr{F})\) 上的广义测度(按约定它只在 \((-\infty, \infty]\) 取值),则必存在 \(C \in \mathscr{F}\),使 \({\displaystyle \mu(C)=\inf _{A \in \mathscr{F}} \mu(A)}\)
  2. \(\text{Hahn}-\text{Jordan}\) 分解:若 \(\mu\) 为可测空间 \((\Omega, \mathscr{F})\) 上的广义测度,由 \(\text{Hahn}\) 分解定理规定的分解 \(\Omega=D+D'\) 称为空间 \(\Omega\) 关于 \(\mu\)\(\text{Hahn}\) 分解,由 \(\text{Jordan}\) 分解定理规定的分解 \(\mu=\mu^{+}-\mu^{-}\) 称为 \(\mu\)\(\text{Jordan}\) 分解,\(\mu^{+}, \mu^{-}\)\(|\mu|\) 分别称为 \(\mu\) 的正变差、负变差和全变差.对广义测度,规定 \(\mu_{1} \vee \mu_{2}=\mu_{1}+\left(\mu_{2}-\mu_{1}\right)^{+}, \ \mu_{1} \wedge \mu_{2}=\mu_{1}-\left(\mu_{1}-\mu_{2}\right)^{+}\)

    1. \(\text{Hahn}\) 分解定理:设 \(\mu\) 为可测空间 \((\Omega, \mathscr{F})\) 上的广义测度
      1. 存在互不相交的 \(D^{+}, D^{-} \in \mathscr{F}\),使 \(\Omega=D^{+}+D^{-}\),且对每一可测集 \(A \subseteq D^{+}\left(D^{-}\right)\),必有 \(\mu(A) \geqslant 0(\leqslant 0)\)
      2. \(\Omega=\widetilde{D}^{+}+\widetilde{D}^{-}\) 且对每一可测集 \(A \subseteq \widetilde{D}^{+}(\widetilde{D}^{-})\)\(\mu(A) \geqslant 0(\leqslant 0)\),则 \(\widetilde{D}^{+} \Delta D^{+}(\widetilde{D}^{-} \triangle D^{-})\) 的可测子集均为 \(\mu\) 零集
    2. \(\text{Jordan}\) 分解定理:若 \(\mu\) 为可测空间 \((\Omega, \mathscr{F})\) 上的广义测度,\(C \in \mathscr{F}\)\({\displaystyle \mu(C)=\inf _{A \in \mathscr{F}} \mu(A)}\) 规定

      1. 对每个 \(A \in \mathscr{F}\),若取 \(\mu^{+}(A)=\mu\left(A C'\right), \ \mu^{-}(A)=-\mu(A C)\),则 \(\mu^{+}, \mu^{-}\) 都是 \((\Omega, \mathscr{F})\) 上的正测度,\(\mu=\mu^{+}-\mu^{-}\)

        \[ \begin{aligned} \mu^{+}(A)&=\sup \{\mu(B): B \subseteq A, B \in \mathscr{F}\} \\ \mu^{-}(A)&=\sup \{-\mu(B): B \subseteq A, B \in \mathscr{F}\} \end{aligned} \]
      2. \(\mu=\mu_{2}-\mu_{1}, \mu_{2}, \mu_{1}\) 都是 \((\Omega, \mathscr{F})\) 上的正测度,则对每个 \(A \in \mathscr{F}\)\(\mu^{+}(A) \leqslant \mu_{2}(A), \ \mu^{-}(A) \leqslant \mu_{1}(A)\)

    \(f\)\((\Omega, \mathscr{F})\) 的可测函数,若 \(f\) 关于 \(\mu\) 的变差 \(|\mu|\) 是可积的,即 \({\displaystyle \int|f| \mathrm{d}|\mu|<\infty}\),则称 \(f\) 为关于广义测度 \(\mu\) 是可积的

  3. \(\text{Lebesgue}\) 分解:若 \((\Omega, \mathscr{F})\) 为可测空间,\(\mu, \nu\) 为其上的 \(\sigma\) 有限测度,则可将 \(\nu\) 唯一地表为 \(\nu=\nu_{1}+\nu_{2}\),其中 \(\nu_{1}, \nu_{2}\) 都是 \(\sigma\) 有限广义测度,且 \(\nu_{1} \ll \mu, \nu_{2} \perp \mu\),上述分解又称为 \(\nu\) 关于 \(\mu\)\(\text{Lebesgue}\) 分解

    1. \(f\) 为测度空间 \((\Omega, \mathscr{F}, \mu)\) 上的可测函数,若存在互不相交的可测集序列 \({\displaystyle \left\{A_{n}\right\}_{n \geqslant 1}, \sum_{n \geqslant 1} A_{n}=\Omega}\),使 \({\displaystyle \int_{A_{n}}|f| \mathrm{d} \mu<\infty}\),则称 \(f\)\(\sigma\) 可积的.此时若 \({\displaystyle \sum_{n \geqslant 1} \int_{A_{n}} f \mathrm{d} \mu}\) 有意义,则记为 \({\displaystyle \int f \mathrm{d} \mu}\)

      1. \((\Omega, \mathscr{F}, P)\) 为概率空间,\(\nu\) 为其上的有限测度,则存在唯一的 \(f \in L^{1}(\Omega, \mathscr{F}, P)\)\(P\) 可略集 \(N\) 使

        \[ \nu(A)=\int_{A} f(\omega) P(\mathrm{d} \omega)+\nu(A N), \ \forall A \in \mathscr{F} \]
      2. \((\Omega, \mathscr{F})\) 为可测空间,\(\mu, \nu\) 为其上的 \(\sigma\) 有限广义测度(不取 \(-\infty\)),则必存在唯一的关于 \(|\mu|\)\(\sigma\) 可积的 \(f\)\(|\mu|\) 可略集 \(N\),使 \({\displaystyle \nu(A)=\int_{A} f(\omega)|\mu|(\mathrm{d} \omega)+\nu(A N)}\)

    2. 可测空间 \((\Omega, \mathscr{F})\) 上的广义测度 \(\mu, \nu\) 若对每个 \(A \in \mathscr{F}\),由 \(|\mu|(A)=\) 0 可推出 \(\nu(A)=0\),则称 \(\nu\) 关于 \(\mu\) 是绝对连续的,记为 \(\nu \ll \mu\).若 \(\nu \ll \mu\)\(\mu \ll \nu\) 同时成立,则记为 \(\nu \equiv \mu\)\(\nu \sim \mu\),称 \(\mu, \nu\) 为相互等价的.若存在 \(A \in \mathscr{F}\) 使 \(|\mu|(A)=0\)\(|\nu|\left(A'\right)=0\),则称 \(\mu, \nu\) 为相互奇异的,记为 \(\mu \perp \nu\)

  4. \(\text{Randon}-\text{Nikodym}\) 定理:设 \((\Omega, \mathscr{F}, P)\) 为概率空间,\(\nu\) 为其上的广义测度且 \(\nu \ll P\),则存在唯一随机变量 \(f, f^{-}\) 可积,使 \({\displaystyle \nu(A)=\int_{A} f(\omega) P(\mathrm{d} \omega), \ \forall A \in \mathscr{F}}\),且此时 \(\nu\) 为正测度的充要条件是 \(f \geqslant 0\) \(\text{a.s.}\)\(\nu\) 为有限测度的充要条件是 \(f\) 可积,\(\nu\)\(\sigma\) 有限测度的充要条件是 \(f\) 有限.称 \(f\)\(\nu\) 关于 \(P\)\(\text{Randon}-\text{Nikodym}\) 导数,简称 \(R-N\) 导数,也记为 \(f=\dfrac{\mathrm{d} \nu}{\mathrm{dP}}\)\(\nu=f \cdot P\)

    1. \((\Omega, \mathscr{F}, P)\) 为概率空间,\(\nu\) 为其上的有限测度,则下列条件等价
      1. \(\nu \ll P\)
      2. 存在 \(f \in L^{1}(\Omega, \mathscr{F}, P)\) 满足 \({\displaystyle \nu(A)=\int_{A} f(\omega) P(\mathrm{d} \omega), \ \forall A \in \mathscr{F}}\)
      3. 对每个 \(\varepsilon>0\),存在 \(\delta>0\),使当 \(P(A)<\delta\) 时,必有 \(\nu(A)<\varepsilon\)
    2. \(\mu, \nu\) 为可测空间 \((\Omega, F)\) 上的 \(\sigma\) 有限广义测度,\(\nu \ll \mu\),则对每个 \(\nu\) 可积函数 \(f\),有 \({\displaystyle \int_{A} f \mathrm{d} \nu=\int_{A} f \dfrac{\mathrm{d} \nu}{\mathrm{d} \mu} \mathrm{d} \mu, \ A \in \mathscr{F}}\)
    3. \(\mu, \nu\) 为可测空间 \((\Omega, \mathscr{F})\) 上的 \(\sigma\) 有限广义测度,\(\nu \ll \mu, \lambda \ll \nu\),则 \(\lambda \ll \mu\),且 \(\dfrac{\mathrm{d} \lambda}{\mathrm{d} \mu}=\dfrac{\mathrm{d} \lambda}{\mathrm{d} \nu} \dfrac{\mathrm{d} \nu}{\mathrm{d} \mu}, \ \text{ a.e. } \mu\)
    4. \((\Omega, \mathscr{F})\) 为可测空间,\(M\) 表示 \((\Omega, \mathscr{F})\) 上有限广义测度全体.对 \(\mu \in M\),取 \(\|\mu\|=|\mu|(\Omega)\),则 \(M\) 在此范数下为 \(\text{Banach}\) 空间,且为完备格

1.2 Lebesgue 测度

  1. 广义实数集:扩充实数集 \(\mathbf R\),得到 \(\widehat{\mathbf{R}}=\mathbf{R} \cup \{+\infty, -\infty\}\)

    1. 允许以 \(+\infty\)\(-\infty\) 成为函数值,\(\pm \infty\) 也称为非真正的实数.通常的实数则称为有限实数,函数值都是有限实数的函数称为有限函数.因此有界函数必是有限函数,但反之不成立
    2. \(+\infty\) 是全体有限实数的上确界,\(-\infty\) 是全体有限实数的下确界:\(-\infty<a<+\infty\)\(a\) 为任何有限实数).从而对于上(下)方无界的递增(减)数列 \(\left\{a_{n}\right\}\),总有 \({\displaystyle \lim _{n \to \infty} a_{n}=+\infty \ (-\infty)}\)
    3. 对于任何有限实数 \(a\)
      1. \(a+( \pm \infty)=( \pm \infty)+a=( \pm \infty)-a=a-(\mp \infty)= \pm \infty\)
      2. \(\dfrac{a}{ \pm \infty}=0\)
      3. \((\pm \infty)+( \pm \infty)= \pm \infty\)
    4. 对任何有限实数 \(a>0\ (<0)\)

      1. \(a( \pm \infty)=( \pm \infty) a=\dfrac{ \pm \infty}{a}= \pm \infty \ (\mp \infty)\)
      2. \((+\infty)(+\infty)=(-\infty)(-\infty)=+\infty\)
      3. \((-\infty)(+\infty)=(+\infty)(-\infty)=-\infty\)
      4. \(0 \cdot( \pm \infty)=( \pm \infty) \cdot 0=0\)

      反之,\(( \pm \infty)-( \pm \infty),( \pm \infty)+(\mp \infty), \dfrac{ \pm \infty}{ \pm \infty}, \dfrac{\mp \infty}{ \pm \infty}, \dfrac{a}{0}, \dfrac{ \pm \infty}{0}\) 都认为是无意义的

  2. 一个定义在 \(E \subseteq \widehat{\mathbf{R}}^{n}\) 上的实函数 \(f(x)\) 确定了 \(E\) 的一组子集 \(\{x: x \in E, f(x)>a\}\)(简记作 \(E[f>a]\)),其中 \(a\) 取遍一切有限实数.反之,\(f(x)\) 本身也由 \(E\) 的这组子集完全确定

1.2.1 外侧度与内测度

  1. 外测度:设 \(E\)\(\widehat{\mathbf{R}}^{n}\) 中任一点集,对于每一列覆盖 \(E\) 的开区间 \({\displaystyle \bigcup_{i=1}^{\infty} I_{i} \supset E}\),作出其的体积总和 \({\displaystyle \mu=\sum_{i=1}^{\infty}\left|I_{i}\right|}\)\(\mu\) 可以等于 \(\infty\), 不同的区间列一般有不同的 \(\mu\)),所有这一切的 \(\mu\) 组成一个下方有界的数集,其下确界(完全由 \(E\) 确定)称为 \(E\)\(\text{Lebesgue}\) 外测度,简称 \(L\) 外测度或外测度,记为 \(m^{*} E\),即 \({\displaystyle m^{*} E=\inf _{E \subseteq \bigcup_{i=1}^{\infty} I_{i}} \sum_{i=1}^{\infty}\left|I_{i}\right|}\)
    1. 外测度的性质
      1. 非负性:\(m^{*} E \geqslant 0\),当 \(E\) 为空集时,\(m^{*} E=0\)
      2. 单调性:设 \(A \subseteq B\),则 \(m^{*} A \leqslant m^{*} B\)
      3. 次可数可加性:\({\displaystyle m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leqslant \sum_{i=1}^{\infty} m^{*} A_{i}}\)
    2. \(E \subseteq \widehat{\mathbf{R}}^{n}\),则 \(m^{*} I=m^{*}(I \cap E)+m^{*}\left(I \cap E'\right)\) 式对 \(\widehat{\mathbf{R}}^{n}\) 中任何开区间都成立的充要条件是对 \(\widehat{\mathbf{R}}^{n}\) 中的任何点集 \(T\) 都有 \(m^{*} T=m^{*}(T \cap E)+m^{*}\left(T \cap E'\right)\)
  2. 内测度:设 \(E\)\(\widehat{\mathbf{R}}^n\) 中的有界集,\(I\) 为任一包含 \(E\) 的开区间,则称 \(|I|-m^*(I-E)\)\(E\) 的内测度,记为 \(m_{*} E\)
    1. \(m_{*} E\)\(I\) 的选择无关
    2. \(0 \leqslant m_{*} E \leqslant m^{*} E\) 恒成立

1.2.2 可测性

  1. \(L\) 可测集:设 \(E\)\(\widehat{\mathbf{R}}^{n}\) 中的点集,如果对任一点集 \(T\) 都有 \(m^{*} T=m^{*}(T \cap E)+m^{*}\left(T \cap E'\right)\),则称 \(E\)\(\text{Lebesgue}\) 可测的或 \(L\) 可测的.此时 \(E\)\(L\) 外测度 \(m^{*} E\) 称为 \(E\)\(\text{Lebesgue}\) 测度或 \(L\) 测度,记为 \(m E\),记 \(L\) 可测集全体为 \(\mathscr{M}\)

    1. 集合 \(E\) 可测的充要条件是对于任意 \(A \subseteq E, B \subseteq E'\) 总有 \(m^{*}(A \cup B)=m^{*} A+m^{*} B\)
    2. \(S\) 可测的充要条件是 \(S'\) 可测
    3. \(S_{1}, S_{2}\) 可测,则 \(S_{1} \cup S_{2}\) 可测且当 \(S_{1} \cap S_{2}=\varnothing\) 时,对于任意 \(T\) 总有 \(m^{*}\left[T \cap\left(S_{1} \cup S_{2}\right)\right]=m^{*}\left(T \cap S_{1}\right)+m^{*}\left(T \cap S_{2}\right)\)

      1. \(S_{i}\ (i=1,2, \cdots, n)\) 可测,则 \({\displaystyle \bigcup_{i=1}^{n} S_{i}}\) 也可测,且当 \(S_{i} \cap S_{j}=\varnothing(i \neq j)\) 时,对于任意集合 \(T\) 总有 \({\displaystyle m^{*}\left(T \cap\left(\bigcup_{i=1}^{n} S_{i}\right)\right)=\sum_{i=1}^{n} m^{*}\left(T \cap S_{i}\right)}\)
      2. \(S_{i}\ (i=1,2, \cdots, n)\) 可测,则 \({\displaystyle \bigcap_{i=1}^{n} S_{i}}\) 也可测
    4. \(\left\{S_{i}\right\}\) 是一列互不相交的可测集,则 \({\displaystyle \bigcup_{i=1}^{\infty} S_{i}}\) 也是可测集且 \({\displaystyle m\left(\bigcup_{i=1}^{\infty} S_{i}\right)=\sum_{i=1}^{\infty} m S_{i}}\)

      1. \(\left\{S_{i}\right\}\) 是一列可测集合,则 \({\displaystyle \bigcup_{i=1}^{\infty} S_{i}}\) 也是可测集合
      2. \(\left\{S_{i}\right\}\) 是一列可测集合,则 \({\displaystyle \bigcap_{i=1}^{\infty} S_{i}}\) 也是可测集合
    5. \(\left\{S_{i}\right\}\) 是一列递增的可测集合 \(S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{n} \subseteq \cdots\),令 \({\displaystyle S=\bigcup_{i=1}^{\infty} S_{i}=\lim _{n \rightarrow \infty} S_{n}}\),则 \({\displaystyle m S=\lim _{n \rightarrow \infty} m S_{n}}\)

      \(\left\{S_{i}\right\}\) 是一列递降的可测集合 \(S_{1} \supset S_{2} \supset \cdots \supset S_{n} \supset \cdots\),令 \({\displaystyle S=\bigcap_{i=1}^{\infty} S_{i}=\lim _{n \rightarrow \infty} S_{n}}\),则 \(m S_{1}<\infty\) 时,\({\displaystyle m S=\lim _{n \rightarrow \infty} m S_{n}}\)

    6. 正规性:若 \(E\) 是一可测集,则有

      1. 外正规性:\(m E=\inf \{m G: G\) 是开集\(, E \subseteq G\}\)
      2. 内正规性:\(m E=\sup \{m K: K\) 是紧集\(, K \subseteq E\}\)

    利用外测度与内测度定义可测集

    \(E\)\(\widehat{\mathbf{R}}^n\) 中有界集,如果 \(m^* E=m_{*} E\),则称 \(E\)\(L\) 可测的.又设 \(E\)\(\widehat{\mathbf{R}}^n\) 中的无界集,如果对任何开区间 \(I\),有界集 \(E \cap I\) 都是 \(L\) 可测的,则称 \(E\)\(L\) 可测的.对 \(L\) 可测集 \(E\),不管它有界或无界,一律称 \(m^* E\) 为它的 \(L\) 测度,简记为 \(m E\)

  2. \(\text{Borel}\) 集都是 \(\text{Lebesgue}\) 可测集

    1. \(\Sigma\)\(\widehat{\mathbf{R}}^{n}\) 的一个子集族,则称所有包含 \(\Sigma\)\(\sigma\) 域的交集(即包含 \(\Sigma\) 的最小 \(\sigma\) 域)为 \(\Sigma\) 产生的 \(\sigma\)
    2. \(\widehat{\mathbf{R}}^{n}\) 中全体开集组成的子集族生成的 \(\sigma\) 域记为 \(\mathscr{B}_n\),称为 \(\text{Borel}\) 域.当不至于混淆时可简记为 \(\mathscr{B}\)
    3. 设集合 \(G\) 可表示为一列开集 \(\left\{G_{i}\right\}\) 之交集 \({\displaystyle G=\bigcap_{i=1}^{\infty} G_{i}}\),则称 \(G\)\(G_{\delta}\) 型集

      设集合 \(F\) 可表示为一列闭集 \(\left\{F_{i}\right\}\) 之并集 \({\displaystyle F=\bigcup_{i=1}^{\infty} F_{i}}\),则称 \(F\)\(F_{\sigma}\) 型集

      1. \(E\) 是任一可测集,则一定存在 \(G_{\delta}\) 型集 \(G\) 使 \(G \supset E\)\(m(G - E)=0\)
      2. \(E\) 是任一可测集,则一定存在 \(F_{\sigma}\) 型集 \(F\) 使 \(F \subseteq E\)\(m(E - F)=0\)

1.2.3 简单函数

  1. \(f(x)\) 是定义在可测集 \(E \subseteq \widehat{\mathbf{R}}^{n}\) 上的可测函数
    1. \(f(x)\) 是定义在可测集 \(E\) 上的实函数,下列任一条件都是 \(f(x)\)\(E\) 上可测的充要条件
      1. 对任何有限实数 \(a, E[f \geqslant a]\) 都可测
      2. 对任何有限实数 \(a, E[f<a]\) 都可测
      3. 对任何有限实数 \(a, E[f \leqslant a]\) 都可测
      4. 对任何有限实数 \(a, b\ (a<b)\)\(E[a \leqslant f<b]\) 都可测(但充分性要假定 \(f(x)\) 是有限函数)
    2. \(f(x)\)\(E\) 上可测,则 \(E[f=a]\) 总可测,不论 \(a\) 是有限实数或 \(\pm \infty\)
    3. 可测集 \(E \subseteq \widehat{\mathbf{R}}^{n}\) 上的连续函数或单调函数是可测函数
  2. 简单函数:设 \(f(x)\) 的定义域 \(E\) 可分为有限个互不相交的可测集 \(E_{1}, E_{2}, \cdots, E_{s}, E={\displaystyle \bigcup_{i=1}^{j} E_{i}}\),使得 \(f(x)\) 在每个 \(E_{i}\) 上都等于某常数 \(c_{i}\),则称 \(f(x)\) 为简单函数

    1. \(f(x)\) 是可测集 \(E\) 上的可测函数,\(E_{1} \subseteq E\)\(E\) 的可测子集,则 \(f(x)\) 看作定义在 \(E_{1}\) 上的函数时是 \(E_{1}\) 上的可测函数

      \(f(x)\) 定义在有限个可测集 \(E_{i} \ (1 \leqslant i \leqslant s)\) 的并集 \({\displaystyle E=\bigcup_{i=1}^{s} E_{i}}\) 上,且 \(f(x)\) 在每个 \(E_{i}\) 上都可测,则 \(f(x)\)\(E\) 上也可测

    2. \(f(x)\)\(g(x)\)\(E\) 上的可测函数,则 \(E[f>g]\)\(E[f \geqslant g]\) 都是可测集

    3. \(f(x), g(x)\)\(E\) 上可测,则下列函数(假定它们在 \(E\) 上有意义)皆在 \(E\) 上可测
      1. \(f(x)+g(x)\)
      2. \(|f(x)|\)
      3. \(\dfrac{1}{f(x)}\)
      4. \(f(x) \cdot g(x)\)
    4. \(\left\{f_{n}(x)\right\}\)\(E\) 上一列(或有限个)可测函数,则 \({\displaystyle \mu(x)=\inf _{n} f_{n}(x)}\)\({\displaystyle \lambda(x)=\sup _{n} f_{n}(x)}\) 都在 \(E\) 上可测
    5. \(\left\{f_{n}(x)\right\}\)\(E\) 上一列可测函数,则 \({\displaystyle F(x)=\varliminf_{n \rightarrow \infty} f_{n}(x), G(x)=\varlimsup_{n \rightarrow \infty} f_{n}(x)}\) 也在 \(E\) 上可测.特别地,当 \({\displaystyle F(x)=\lim _{n \to \infty} f_{n}(x)}\) 存在时,它也在 \(E\) 上可测

    可测函数与简单函数的关系

    1. \(f(x)\)\(E\) 上非负可测,则存在可测简单函数列 \(\left\{\varphi_{k}(x)\right\}\) 使得对任意 \(x \in E\) 都有 \(\varphi_{k}(x) \leqslant \varphi_{k+1}(x) \ (k=1,2, \cdots)\)\({\displaystyle \lim _{k \rightarrow \infty} \varphi_{k}(x)=f(x)}\)
    2. \(f(x)\)\(E\) 上可测,则存在可测简单函数列 \(\left\{\varphi_{k}(x)\right\}\) 使得对任意 \(x \in E\) 都有 \({\displaystyle \lim _{k \rightarrow \infty} \varphi_{k}(x)=f(x)}\).若 \(f(x)\)\(E\) 上有界,则上述收敛可以是一致的
  3. \(\pi\) 是一个与集合 \(E\) 的点 \(x\) 有关的命题.若存在 \(E\) 的子集 \(M\),满足 \(m M=0\) 使得 \(\pi\)\(E - M\) 上恒成立, 即 \(E - E[\pi\) 成立\(]\) 是零测度集,则称 \(\pi\)\(E\) 上几乎处处成立,或说 \(\pi\) \(\text{a.e.}\)\(E\)

    1. \(\text{Egorov}\) 定理:设 \(m E<\infty\)\(\left\{f_{n}\right\}\)\(E\) 上一列 \(\text{a.e.}\)收敛于一个 \(\text{a.e.}\)有限的函数 \(f\) 的可测函数.则对任意 \(\delta>0\),存在子集 \(E_{\delta} \subseteq E\) 使 \(\left\{f_{n}\right\}\)\(E_{\delta}\) 上一致收敛且 \(m\left(E - E_{\delta}\right)<\delta\)
    2. \(\text{Lusin}\) 定理:设 \(f(x)\)\(E\)\(\text{a.e.}\)有限的可测函数,则对任意 \(\delta>0\),存在闭子集 \(F_{\delta} \subseteq E\) 使 \(f(x)\)\(F_{\delta}\) 上是连续函数且 \(m\left(E - F_{\delta}\right)<\delta\)
      1. \(\text{Lusin}\) 定理的逆命题也成立
      2. \(f(x)\)\(E \subseteq \widehat{\mathbf{R}}\)\(\text{a.e.}\)有限的可测函数,则对任意 \(\delta>0\),存在闭集 \(F \subseteq E\) 及整个 \(\widehat{\mathbf{R}}\) 上的连续函数 \(g(x)\)\(F\)\(g(x)\) 依赖于 \(\delta\))使得在 \(F\)\(g(x)=f(x)\)\(m(E - F)<\delta\).此外还可要求 \({\displaystyle \sup _{\widehat{\mathbf{R}}} g(x)=\sup _{F} f(x)}\)\({\displaystyle \inf _{\widehat{\mathbf{R}}} g(x)=\inf _{F} f(x)}\)
    3. 依测度收敛:设 \(\left\{f_{n}\right\}\)\(E \subseteq \widehat{\mathbf{R}}^{q}\) 上的一列 \(\text{a.e.}\)有限的可测函数,若有 \(E\)\(\text{a.e.}\)有限的可测函数 \(f(x)\) 有「对任意 \(\sigma>0\)\({\displaystyle \lim _{n \to \infty} m E\left[\left|f_{n}-f\right| \geqslant \sigma\right]=0}\)」,则称函数列 \(\left\{f_{n}\right\}\) 依测度收敛于 \(f\),或度量收敛于 \(f\),记为 \(f_{n}(x) \Rightarrow f(x)\)
      1. \(\text{a.e.}\)收敛的函数列可能不依测度收敛,依测度收敛的函数列可能不 \(\text{a.e.}\)收敛
      2. \(\text{Riesz}\) 定理:设在 \(E\)\(\left\{f_{n}\right\}\) 依测度收敛于 \(f\),则存在子列 \(\left\{f_{n_{i}}\right\}\)\(E\)\(\text{a.e.}\)收敛于 \(f\)
      3. \(\text{Lebesgue}\) 定理:设 \(m E<\infty\)\(\left\{f_{n}\right\}\)\(E\)\(\text{a.e.}\)有限的可测函数列且在 \(E\)\(\text{a.e.}\)收敛于 \(\text{a.e.}\)有限的函数 \(f\),则 \(f_{n}(x) \Rightarrow f(x)\)
      4. \(f_{n}(x) \Rightarrow f(x), f_{n}(x) \Rightarrow g(x)\),则 \(f(x)=g(x)\) \(\text{a.e.}\)\(E\)