3 统计独立性
3.1 独立性
设 \((\Omega, \mathscr{F}, P)\) 为概率空间,\(T\) 为某个参数集
- 独立子类族:事件族 \(\left\{A_{t}\right\}_{t \in T} \subseteq \mathscr{F}\) 若有对 \(T\) 的任一有限子集 \(I \subseteq T\),\({\displaystyle P\left(\bigcap_{t \in I} A_{t}\right)=\prod_{t \in I} P\left(A_{t}\right)}\),则该事件族为称为(关于 \(P\))统计独立的.\(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 为 \(\mathscr{F}\) 的子类族,若对 \(T\) 的任一有限子集 \(I \subseteq T\) 有 \({\displaystyle \forall A_{t} \in \mathscr{C}_{t}, t \in I: P\left(\bigcap_{t \in I} A_{t}\right)=\prod_{t \in I} P\left(A_{t}\right)}\) 成立,则称 \(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 为(关于 \(P\))独立子类族.特别地,当 \(\mathscr{C}_{t}\) 为 \(\mathscr{F}\) 的子 \(\sigma\) 域时,\(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 称为(关于 \(P\))独立的 \(\sigma\) 域族
- 设 \(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 为 \(\mathscr{F}\) 的子类族.若对每个 \(t \in T, \mathscr{C}_{t}\) 为 \(\pi\) 类,且 \(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 为独立族
- \(\left\{\mathscr{B}_{t}=\sigma\left(\mathscr{C}_{t}\right)\right\}_{t \in T}\) 为独立族
- 若 \(\overline{\mathscr{B}}_{t}\) 表示 \(\mathscr{B}_{t}\) 的完备化 \(\sigma\) 域,则 \(\left\{\overline{\mathscr{B}}_{t}\right\}_{t \in T}\) 为独立族
- 若子 \(\sigma\) 域族 \(\left\{\mathscr{B}_{t}\right\}_{t \in T}\) 为独立族,\(\left\{T_{\alpha}\right\}_{\alpha \in J}\) 为 \(T\) 的互不相交子集,则 \(\left\{\mathscr{B}_{T_{\alpha}}=\sigma\left(\mathscr{B}_{t}, t \in T_{\alpha}\right), \alpha \in J\right\}\) 为独立族
- 设 \(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 为 \(\mathscr{F}\) 的子类族.若对每个 \(t \in T, \mathscr{C}_{t}\) 为 \(\pi\) 类,且 \(\left\{\mathscr{C}_{t}\right\}_{t \in T}\) 为独立族
-
独立随机变量族:设 \((\Omega, \mathscr{F}, P)\) 上随机变量族为 \(\left\{X_{t}\right\}_{t \in T}\),若 \(\left\{\sigma\left(X_{t}\right)\right\}_{t \in T}\) 是独立的子 \(\sigma\) 域族,则称 \(\left\{X_{t}\right\}_{t \in T}\) (关于 \(P\))独立
- 随机变量族 \(\left\{X_{t}\right\}_{t \in T}\) 为独立族的充要条件有
- 对任意 \(a_{t} \in \mathbf R\),及 \(T\) 的任一有限子集 \(I\) 有 \({\displaystyle P\left[\bigcap_{t \in I}\left(X_{t} \leqslant a_{t}\right)\right]=\prod_{t \in I} P\left[X_{t} \leqslant a_{t}\right]}\)
- 对任意 \(B_t\in \mathscr{B}\),及 \(T\) 的任一有限子集 \(I\) 有 \({\displaystyle P\left(\bigcap_{t \in I}X_{t}^{-1} (B_t)\right)=\prod_{t \in I} P\left(X_{t}^{-1} (B_t)\right)}\)
- 对于任意 \(n \in \mathbf{N}\) 都有 \({\displaystyle F_{X_1, X_2, \cdots, X_n}(x_1, x_2, \cdots, x_n)=\prod_{k=1}^n F_{X_k}(x_k)}\)
- 对于任意 \(n \in \mathbf{N}\) 都有 \({\displaystyle p_{X_1, X_2, \cdots, X_n}(x_1, x_2, \cdots, x_n)=\prod_{k=1}^n p_{X_k}(x_k)}\)
- 设 \(\left\{X_{t}\right\}_{t \in T}\) 为独立随机变量族,\(\left\{T_{\alpha}, \alpha \in J\right\}\) 为 \(T\) 的互不相交子集,\(\left\{f_{\alpha}\left(X_{t}, t \in T_{\alpha}\right), \alpha \in J\right\}\) 为 \(\text{Borel}\) 函数族,则 \(\left\{Y_{\alpha}=f_{\alpha}\left(X_{t}, t \in T_{\alpha}\right), \alpha \in J\right\}\) 为独立随机变量族
-
设 \(\left\{X_{t}\right\}_{t \in T}\) 为独立随机变量族,且对每个 \(t \in T\) 都有 \(f_{t}\left(X_{t}\right)\) 可积(非负),则对 \(T\) 的任一有限子集 \(I\),都有
\[ \mathrm{E}\left[\prod_{t \in I} f_{t}\left(X_{t}\right)\right]=\prod_{t \in I} \mathrm{E}\left[f_{t}\left(X_{t}\right)\right] \]特别地,若 \(\left\{X_{t}\right\}_{t \in T}\) 为独立可积(非负)随机变量族,则对 \(T\) 的任一有限子集 \(I\),都有
\[ \mathrm{E}\left[\prod_{t \in I} X_{t}\right]=\prod_{t \in I} \mathrm{E}\left[X_{t}\right] \]
独立随机变量的性质
设 \(X, Y\) 是两个随机变量,则 \(X\) 与 \(Y\) 独立分别与下列条件等价
- 对于任意非负可测函数 \(f, g\),有 \(\mathrm{E}[f(X) \cdot g(Y)]=\mathrm{E}[f(X)] \cdot \mathrm{E}[g(Y)]\)
- 对于任意有界可测函数 \(f, g\),有 \(\mathrm{E}[f(X) \cdot g(Y)]=\mathrm{E}[f(X)] \cdot \mathrm{E}[g(Y)]\)
- \(\varphi_{X, Y}(t_1, t_2)=\varphi_X(t_1)\cdot \varphi_Y(t_2)\)
- 随机变量族 \(\left\{X_{t}\right\}_{t \in T}\) 为独立族的充要条件有
3.2 独立随机变量序列
3.2.1 零一律
- 尾 \(\sigma\) 域:若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为随机变量序列,记 \({\displaystyle \mathscr{B}^{*}=\bigcap_{n=1}^{\infty} \sigma\left(X_{k}, k \geqslant n\right)}\),则称 \(\mathscr{B}^{*}\) 为关于 \(X\) 的尾 \(\sigma\) 域或尾事件域
- \(\text{Kolmogorov}\) 零一律:若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,则其尾事件域 \(\mathscr{B}^{*}\) 中任一事件的概率必为 \(0\) 或 \(1\)
- 若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,\(\mathscr{B}^{*}\) 为其尾事件域,则 \(\mathscr{B}^{*}\) 可测随机变量 \(Y\) 必为退化的,即 \(Y\) 以概率 \(1\) 取常数值
- 若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列
- \({\displaystyle \varlimsup_{n \to \infty} X_{n}, \varliminf_{n \to \infty} X_{n}}\) 为退化的
- \(\left\{\omega: {\displaystyle \lim _{n \to \infty} X_{n}} \textsf{ 存在}\right\}, \ \left\{\omega: {\displaystyle \sum_{n \to \infty} X_{n}} \textsf{ 收敛} \right\}, \ \left\{\omega: {\displaystyle \lim _{n \to \infty} \dfrac{1}{n} \sum_{j \leqslant n} X_{j}=0}\right\}\) 诸事件的概率为 \(0\) 或 \(1\)
- \(\text{Borel}-\text{Cantelli}\) 引理
- 对事件列 \(\left\{A_{n}\right\}_{n \geqslant 1}\),\({\displaystyle \sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty \to P\left(A_{n} \text{ i.o.}\right)=0}\)
- 若 \(\left\{A_{n}\right\}_{n \geqslant 1}\) 为独立事件列,则 \({\displaystyle \sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty \rightarrow P\left(A_{n} \text{ i.o.}\right)=1}\)
3.2.2 独立项级数
- 设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为随机变量序列,\({\displaystyle S_{n}=\sum_{j \leqslant n} X_{j}}\).当 \(\left\{S_{n}\right\}\) \(\text{a.s.}\)(或依概率)收敛于有限随机变量 \(S\),则称随机变量级数 \({\displaystyle \sum_{j=1}^{\infty} X_{j}}\) \(\text{a.s.}\)(或依概率)收敛
- \(\text{Kolmogorov}\) 不等式:若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,且 \(\mathrm{E} X_{n}=0, \mathrm{E} X_{n}^{2}<\infty\).记 \({\displaystyle S_{n}=\sum_{j \leqslant n} X_{j}}\),则对任一 \(\varepsilon>0\) 都有 \({\displaystyle P\left[\max _{1 \leqslant j \leqslant n}\left|S_{j}\right| \geqslant \varepsilon\right] \leqslant \dfrac{\mathrm{E} S_{n}^{2}}{\varepsilon^{2}}}\)
- 设 \(\left\{Y_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,则 \({\displaystyle \sum_{n \geqslant 1} \mathrm{D}\left[Y_{n}\right]<\infty \to \sum_{n=1}^{\infty}\left(Y_{n}-\mathrm{E} Y_{n}\right)}\) \(\text{a.s.}\)收敛
- 若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,且 \(\left|X_{n}\right| \leqslant C \ \text{a.s.}, \ \mathrm{E} X_{n}=0\).记 \({\displaystyle S_{n}=\sum_{j=1}^{n} X_{j}}\)
- 对任一 \(\varepsilon>0\),有 \({\displaystyle P\left[\max _{1 \leqslant j \leqslant n}\left|S_{j}\right| \leqslant \varepsilon\right] \leqslant \dfrac{(C+\varepsilon)^{2}}{\mathrm{E} S_{n}^{2}}}\)
- 若 \({\displaystyle \sum_{n \geqslant 1} X_{n}}\) \(\text{a.s.}\)收敛,则 \({\displaystyle \sum_{n \geqslant 1} \mathrm{D}\left[X_{n}\right]<\infty}\)
- 对随机变量序列 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 及 \(\left\{Y_{n}\right\}_{n \geqslant 1}\),若 \(P\left(X_{n} \neq Y_{n} \ \text{ i.o.}\right)=0\),则称 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 与 \(\left\{Y_{n}\right\}_{n \geqslant 1}\) 为等价的
- 若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 与 \(\left\{Y_{n}\right\}_{n \geqslant 1}\) 等价,则 \({\displaystyle \sum_{n \geqslant 1}\left(X_{n}-Y_{n}\right)}\) \(\text{a.s.}\)收敛,且对趋于无穷的数列 \(\left\{a_{n}\right\}\) 有 \({\displaystyle \lim _{n \rightarrow \infty} \dfrac{1}{a_{n}} \sum_{j=1}^{n}\left(X_{j}-Y_{j}\right)=0}\) \(\text{a.s.}\)
- 三级数定理:设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,记 \(X_{n}^{(a)}(\omega)=X_{n}(\omega) I_{\left|X_{n}(\omega)\right| \leqslant a}\),则级数 \({\displaystyle \sum_{n \geqslant 1} X_{n}}\) \(\text{a.s.}\)收敛的充要条件是对某一(任一)\(a \in(0, \infty)\),级数 \({\displaystyle \sum_{n \geqslant 1} P\left[\left|X_{n}\right|>a\right], \ \sum_{n \geqslant 1} \mathrm{E} X_{n}^{(a)}, \ \sum_{n \geqslant 1} \mathrm{D}\left[X_{n}^{(a)}\right]}\) 同时收敛
- \(\text{Ottaviani}\) 不等式:若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,\(a, b, c\) 为正数且 \({\displaystyle P\left[\left|\sum_{j=k+1}^{n} X_{j}\right| \leqslant b\right] \geqslant a, \ 0 \leqslant k \leqslant n-1}\),则 \({\displaystyle P\left[\max _{1 \leqslant k \leqslant n}\left|\sum_{j=1}^{k} X_{j}\right|>b+c\right] \leqslant \dfrac{1}{a} P\left[\left|\sum_{j=1}^{n} X_{j}\right|>c\right]}\)
- 若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,则 \({\displaystyle \sum_{n \geqslant 1} X_{n}}\) \(\text{a.s.}\)收敛与 \({\displaystyle \sum_{n \geqslant 1} X_{n}}\) 依概率收敛是等价的
- 若随机变量 \(X\) 对任一实数 \(x\) 有 \(P[X \leqslant-x]=P[X \geqslant x]\),则称 \(X\) 具有对称分布
- 对称分布的性质
- \(X\) 具有对称分布即 \(X\) 与 \(-X\) 有相同分布
- 若 \(X\) 有对称分布,则 \(P[X \leqslant 0]=P[X \geqslant 0] \geqslant \dfrac{1}{2}\)
- 对一般的随机变量 \(X\),若取 \(Y\) 与 \(X\) 独立且有相同分布,则 \(Z=X-Y\) 有对称分布
- 若独立随机变量序列 \(\left\{X_{j}\right\}_{j \geqslant 1}\) 都具有对称分布,则 \({\displaystyle S_{n}=\sum_{j \leqslant n} X_{j}}\) 也有对称分布
-
\(\text{L}\acute{\mathrm e}\text{vy}\) 不等式:设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为相互独立具有对称分布的随机变量序列,\({\displaystyle S_{n}=\sum_{j \leqslant n} X_{j}}\),则对任一 \(\varepsilon>0\) 有
\[ \begin{aligned} P\left[\max _{1 \leqslant j \leqslant n} S_{j} \geqslant \varepsilon\right] & \leqslant 2 P\left[S_{n} \geqslant \varepsilon\right] \\ P\left[\max _{1 \leqslant j \leqslant n}\left|S_{j}\right| \geqslant \varepsilon\right] & \leqslant 2 P\left[\left|S_{n}\right| \geqslant \varepsilon\right] \end{aligned} \]
- 对称分布的性质
3.2.3 渐进理论
-
大数定律:设 \(X=\left\{X_{n}\right\}_{n \geqslant 1}\) 为随机变量序列,\({\displaystyle S_{n}=\sum_{j \leqslant n} X_{j}}\).若存在常数序列 \(\left\{a_{n}\right\},\left\{b_{n}\right\}\) 使 \(\dfrac{S_{n}}{b_{n}}-a_{n} \rightarrow 0\) \(\text{a.s.}\)(或依概率),则称 \(X\) 满足强大数(弱大数)定律,也称 \(S_{n}\) 是 \(\text{a.s.}\)(依概率)稳定的
-
\(\text{Markov}\) 大数定律:设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,\({\displaystyle S_{n}=\sum_{j \leqslant n} X_{j},\left\{b_{n}\right\}}\) 为趋于 \(+\infty\) 的序列.若当 \(n \rightarrow \infty\) 时
\[ \begin{aligned} \sum_{j=1}^{n} P\left[\left|X_{j}\right|>b_{n}\right]&=o(1) \\ \dfrac{1}{b_{n}^{2}} \sum_{j=1}^{n} \mathrm{D}\left[X_{j} I_{\left|X_{j}\right| \leqslant b_{n}}\right]&=o(1) \end{aligned} \]则取 \({\displaystyle a_{n}=\sum_{j=1}^{n} \mathrm{E}\left[X_{j} I_{\left|X_{j}\right| \leqslant b_{n}}\right]}\) 有 \(\dfrac{1}{b_{n}}\left(S_{n}-a_{n}\right) \overset{P}{\longrightarrow} 0\).特别地,若上两式及 \({\displaystyle \dfrac{1}{b_{n}} \sum_{j=1}^{n} \mathrm{E}\left[X_{j} I_{\left|X_{j}\right| \leqslant b_{n}}\right]=o(1)}\) 成立,则有 \(\dfrac{S_{n}}{b_{n}} \overset{P}{\longrightarrow} 0\)
- 设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立同分布(简写作 \(\text{i.i.d.}\))的随机变量序列,则存在常数列 \(C_{n}\),使 \({\displaystyle \left(\dfrac{1}{n} \sum_{j=1}^{n} X_{j}-C_{n}\right) \overset{P}{\longrightarrow} 0}\) 的充要条件是 \({\displaystyle \lim _{n \rightarrow \infty} n P\left[\left|X_{1}\right|>n\right]=0}\),且这时 \(C_{n}\) 可取为 \(C_{n}=\mathrm{E}\left[X_{1} I_{\left|X_{n}\right| \leqslant n}\right]\)
-
\(\text{Khintchine}\) 大数定律:设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立同分布随机变量序列,则 \({\displaystyle \dfrac{1}{n} \sum_{j=1}^{n} X_{j} \overset{P}{\longrightarrow} a}\) 的充要条件是
\[ \begin{aligned} \lim _{n \rightarrow \infty} n P\left(\left|X_{1}\right|>n\right)&=0 \\ \lim _{n \rightarrow \infty} \mathrm{E}\left[X_{1} I_{\left|X_{1}\right| \leqslant n}\right]&=a \end{aligned} \]
-
\(\text{Kolmogorov}\) 大数定律:设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立同分布随机变量序列,则存在常数列 \(\left\{C_{n}\right\}\),使 \({\displaystyle \lim _{n \rightarrow \infty} \dfrac{1}{n} \sum_{j=1}^{n}\left(X_{j}-C_{n}\right)=0}\) \(\text{a.s.}\) 的充要条件是 \(\mathrm{E}\left|X_{1}\right|<\infty\),且这时必有 \(C_{n}=\mathrm{E} X_{1}+o(1)\) 与 \({\displaystyle \lim _{n \rightarrow \infty} \dfrac{1}{n} \sum_{j=1}^{n} X_{j}=\mathrm{E} X_{1} \ \text{a.s.}}\)
-
\(\text{Kronecker}\) 引理:设 \(\left\{x_{k}\right\}\) 为实数列,\(\left\{b_{k}\right\}\) 为递增趋于 \(+\infty\) 的正数列,则 \({\displaystyle \sum_{j\geqslant 1} \dfrac{x_{j}}{b_{j}}}\) 收敛 \(\to\) \({\displaystyle \lim _{n \rightarrow \infty} \dfrac{1}{b_{n}} \sum_{j=1}^{n} x_{j}=0}\)
- 设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立随机变量序列,\(\mathrm{E} X_{n}=0, \ \sigma_{n}^{2}=\mathrm{E} X_{n}^{2}<\infty\).记 \({\displaystyle S_{n}=\sum_{j=1}^{n} X_{j}, \ s_{n}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2}}\),若 \(s_{n}^{2} \rightarrow \infty\),则对任一 \(\varepsilon>0\),\({\displaystyle \lim _{n \rightarrow \infty} \dfrac{S_{n}}{s_{n}\left(\log s_{n}^{2}\right)^{\frac{1}{2}+\varepsilon}}=0}\) \(\text{a.s.}\)
-
设 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立同分布随机变量序列,且 \(\mathrm{E} X_{n}=0, \ \mathrm{E} X_{n}^{2}<\infty\),则对任一 \(\varepsilon>0\) 都有
\[ \begin{aligned} \lim _{n \rightarrow \infty} \dfrac{1}{n^{\frac{1}{2}+\varepsilon}} \sum_{j=1}^{n} X_{j}&=0 \ \text{a.s.} \\ \lim _{n \rightarrow \infty} \dfrac{1}{n^{\frac{1}{2}}(\log n)^{\frac{1}{2}+\varepsilon}} \sum_{j=1}^{n} X_{j}&=0 \ \text{a.s.} \end{aligned} \]
-
\(\text{Glivenko}-\text{Cantelli}\) 定理:若 \(\left\{X_{n}\right\}_{n \geqslant 1}\) 为独立同分布随机变量序列,经验分布函数 \(F_n\) 是总体分布 \(F\) 的估计,定义为 \({\displaystyle F_{n}(x)=\dfrac{\#\left\{1 \leqslant j \leqslant n: X_{j} \leqslant x\right\}}{n}=\dfrac{1}{n} \sum_{j=1}^{n} I_{X_{j} \leqslant x}}\),则 \({\displaystyle \lim _{n \rightarrow \infty} \sup _{x \in \mathbf{R}}\left|F_{n}(x)-F(x)\right|=0}\) \(\text{a.s.}\)
-
大数定律的经典表述
- \(\text{Markov}\) 弱大数定律:若随机变量序列 \(\left\{X_n\right\}_{n\geqslant 1}\) 满足 \({\displaystyle \lim _{n \rightarrow \infty} \frac{\mathrm{D}S_n}{n^2}=0}\)(\(\text{Markov}\) 条件),则 \(\dfrac{S_n-\mathrm{E}S_n}{n} \stackrel{P}{\longrightarrow} 0\)
- \(\text{Bernoulli}\) 大数定律:设 \(X_n \sim B(n, p)\),则 \(\dfrac{X_n}{n} \stackrel{P}{\longrightarrow} p\)
- \(\text{Chebyshev}\) 弱大数定律:若随机变量序列 \(\left\{X_n\right\}_{n\geqslant 1}\) 中的随机变量两两不相关且存在 \(C>0\) 使得 \(\mathrm{D}X_n \leqslant C\),则 \(\dfrac{S_n-\mathrm{E}S_n}{n} \stackrel{P}{\longrightarrow} 0\)
- 设 \(\left\{X_n\right\}_{n\geqslant 1}\) 为独立同分布随机变量序列
- \(\text{Khintchine}\) 弱大数定律:若 \(\mathrm{E}X_1=\mu\),则 \(\dfrac{S_n}{n} \stackrel{P}{\longrightarrow} \mu\)
- \(\text{Kolmogorov}\) 强大数定律:存在常数 \(a\) 使得 \(\dfrac{S_n-n a}{n} \stackrel{\text{a.s.}}{\longrightarrow} 0\) 的充要条件是 \(\mathrm{E}X_1=a, \mathrm{E}|X_1|<\infty\)
-
-
中心极限定理:设 \(\left\{X_n\right\}_{n\geqslant 1}\) 为独立同分布随机变量序列,\(\mathrm{E}X^2_n\) 存在,即 \(X_n\) 存在数学期望 \(\mathrm{E}X_n=\mu, \ DX_n=\sigma^2\).若 \({\displaystyle \mathrm{E}\left[\sum_{k=1}^n X_k\right]=\sum_{k=1}^n \mathrm{E}X_k=n\mu, \ \mathrm{D}\left[\sum_{k=1}^n X_k\right]=\sum_{k=1}^n \mathrm{D}X_k=n\sigma^2}\),则 \({\displaystyle \dfrac{{\displaystyle \sum_{k=1}^n X_n-n\mu}}{\sqrt{n\sigma^2}}=\dfrac{{\displaystyle \sum_{k=1}^n(X_n-\mu)}}{\sqrt{n} \sigma} \overset{w}{\longrightarrow} N(0, 1)}\)