跳转至

2 微分法

2.1 连续统

2.1.1 一元连续函数

  1. 连续函数的定义
    1. 函数 \(f(x)\) 在单点连续
      1. 函数在 \(x_0\) 连续:\({\displaystyle \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)}\),此时 \(f(x)\)\(x_0\) 有定义
      2. 函数在 \(x_0\) 点左连续:\(f\left(x_{0}-0\right)=f\left(x_{0}\right)\)
      3. 函数在 \(x_0\) 点右连续:\(f\left(x_{0}+0\right)=f\left(x_{0}\right)\)
    2. 函数在区间内连续
      1. 函数 \(f(x)\)\((a, b)\) 连续:对 \((a, b)\) 内任何一点 \(x_{0}\) 均有 \({\displaystyle \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)}\)
      2. 函数 \(f(x)\)\([a, b]\) 连续:函数在 \((a, b)\) 连续且 \(f(a+0)=f(a), f(b-0)=f(b)\)
    3. 一致连续:设函数 \(f(x)\) 在区间 \(X\) 内满足对任意的 \(\varepsilon>0\),可找到只与 \(\varepsilon\) 有关而与 \(X\) 内的点 \(x\) 无关的 \(\eta>0\),使得对 \(X\) 内任意两点 \(x_{1}\)\(x_{2}\),当 \(\left|x_{1}-x_{2}\right|<\eta\) 时,总有 \(\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon\),则称 \(f(x)\)\(X\) 内一致连续
  2. 连续函数的性质
    1. \(f(x), g(x)\) 在点 \(x_{0}\) 连续,则 \(f(x) \pm g(x), f(x) g(x)\) 也在点 \(x_0\) 连续,若 \(g\left(x_{0}\right) \neq 0\),则 \(\dfrac{f(x)}{g(x)}\) 也在点 \(x_0\) 连续
    2. \(f(x)\)\(a \leqslant x \leqslant b\) 严格单调递增(或递减)且在每点连续,又设 \(f(a)=\alpha, f(b)=\beta\),则在区间 \(\alpha \leqslant y \leqslant \beta\) 上存在 \(y=f(x)\) 的反函数 \(x=\varphi(y)\) 在区间上单调递增(或递减)且连续
    3. \(u=g(x)\) 在点 \(x_{0}\) 连续,\(y=f(u)\) 在点 \(u_{0}\) 连续且 \(g\left(x_{0}\right)=u_{0}\),则复合函数 \(y=f \circ g(x)\) 在点 \(x_{0}\) 连续
    4. 初等函数均在其定义域内连续
  3. 不连续点:设 \(x_0\) 是函数 \(f(x)\) 的一个不连续点
    1. 第一类不连续点:\(f\left(x_{0}+0\right), f\left(x_{0}-0\right)\) 存在但不相等
    2. 第二类不连续点:\(f\left(x_{0}+0\right)\)\(f\left(x_{0}-0\right)\) 中至少有一个不存在
    3. 可移不连续点:\({\displaystyle \lim _{x \rightarrow x_{0}} f(x)}\) 存在但不等于 \(f\left(x_{0}\right)\)\(f(x)\) 在点 \(x_{0}\) 没有定义
  4. 闭区间上连续函数的性质:设 \(f(x)\)\([a, b]\) 上连续
    1. 有界性:\(f(x)\)\([a, b]\) 上有界
    2. 最值:在 \([a, b]\) 内至少有两点 \(\xi_{1}\)\(\xi_{2}\),使得对 \([a, b]\) 内的一切 \(x\),有 \(f\left(\xi_{1}\right) \leqslant f(x) \leqslant f\left(\xi_{2}\right)\)
    3. 零点存在定理:若 \(f(a)f(b) < 0\),则在 \([a, b]\) 内至少有一点 \(\xi\),使 \(f(\xi)=0\)
    4. 介值定理:设 \(f(x)\)\([a, b]\) 上最小值为 \(m\),最大值为 \(M\),则对任意 \(c \ (m<c<M)\)\([a, b]\) 内至少存在一个 \(\xi\) 使得 \(f(\xi)=c\)
    5. \(\text{Cantor}\) 定理:\(f(x)\)\([a, b]\) 上一致连续
    6. \(\text{Weierstrass}\) 逼近定理:存在多项式函数列 \(\{f_{n}(x)\}\) 使得 \(f_{n}(x)\) 一致收敛于 \(f(x)\)

2.1.2 多元连续函数

  1. 连续性的定义
    1. 多元函数的连续性:设 \(D\)\(\mathbf{R}^{n}\) 上的开集,\(z=f(\boldsymbol{x})\) 是定义在 \(D\) 上的函数,\(\boldsymbol{x}_{0} \in D\) 为定点.如果 \({\displaystyle \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)}\),则称函数 \(f\) 在点 \(x_{0}\) 连续
    2. 向量值函数的连续性:设 \(D\)\(\mathbf{R}^{n}\) 上的开集,\(x_{0} \in D\) 为定点,\(\boldsymbol f: D \rightarrow \mathbf{R}^{m}\) 是向量值函数.如果 \(\boldsymbol f\) 满足 \({\displaystyle \lim _{x \rightarrow x_{0}} \boldsymbol f(x)=\boldsymbol f\left(x_{0}\right)}\),则称 \(\boldsymbol f\)\(x_{0}\) 点连续
      1. 设点集 \(K \subseteq \mathbf{R}^{n}, \boldsymbol{f}: K \rightarrow \mathbf{R}^{m}\) 为向量值函数,\(\boldsymbol{x}_{0} \in K\).如果对于任意给定的 \(\varepsilon>0\),存在 \(\delta>0\) 使得当 \(\boldsymbol{x} \in O\left(\boldsymbol{x}_{0}, \delta\right) \cap K\) 时有 \(\left|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right|<\varepsilon\),则称 \(\boldsymbol{f}\) 在点 \(\boldsymbol{x}_{0}\) 连续.如果映射 \(\boldsymbol{f}\)\(K\) 上每一点连续,则称 \(\boldsymbol{f}\)\(K\) 上连续,或称映射 \(\boldsymbol{f}\)\(K\) 上的连续映射
      2. \(D\)\(\mathbf{R}^{n}\) 上的开集,\(\boldsymbol{x}_{0} \in D\) 为定点,则映射 \(\boldsymbol f: D \rightarrow \mathbf{R}^{m}\)\(\boldsymbol{x}_{0}\) 点连续当且仅当函数 \(f_{1}, f_{2}, \cdots, f_{m}\)\(x_{0}\) 点连续
      3. 如果 \(\boldsymbol g\)\(D\) 上连续,\(\boldsymbol f\)\(\Omega\) 上连续,那么复合映射 \(\boldsymbol f \circ \boldsymbol g\)\(D\) 上连续
    3. 一致连续:设 \(K\)\(\mathbf{R}^{n}\) 中点集,\(\boldsymbol f: K \rightarrow \mathbf{R}^{m}\) 为映射.如果对于任意给定的 \(\varepsilon>0\),存在 \(\delta>0\) 使得 \(\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon\) 对于 \(K\) 中所有满足 \(\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}^{\prime \prime}\right|<\delta\)\(\boldsymbol{x}^{\prime}, \boldsymbol{x}^{\prime \prime}\) 成立,则称 \(\boldsymbol{f}\)\(K\) 上一致连续
  2. 连续函数的性质
    1. 紧集上的连续映射:设 \(S\)\(\mathbf R^n\) 上的点集,如果 \(S\) 的任意一个开覆盖 \(\{U_n\}\) 中总存在一个有限子覆盖,则称 \(S\) 为紧集
      1. 连续映射将紧集映射成紧集
      2. 有界性定理:设 \(K\)\(\mathbf{R}^{n}\) 中紧集,\(f\)\(K\) 上的连续函数,则 \(f\)\(K\) 上有界
      3. 最值定理:设 \(K\)\(\mathbf{R}^{n}\) 中紧集,\(f\)\(K\) 上的连续函数,则 \(f\)\(K\) 上必能取到最大值和最小值.即存在 \(\xi_{1}, \boldsymbol{\xi}_{2} \in K\),使得对于一切 \(x \in K\) 成立
      4. 一致连续性定理:设 \(K\)\(\mathbf{R}^{n}\) 中紧集,\(\boldsymbol f: K \rightarrow \mathbf{R}^{m}\) 为连续映射,则 \(\boldsymbol f\)\(K\) 上一致连续
    2. 连通集上的连续映射:连通的开集称为(开)区域,(开)区域的闭包称为闭区域

      1. 连续映射将连通集映射成连通集,将连通的紧集映射成闭区间
      2. 介值定理:设 \(K\)\(\mathbf{R}^{n}\) 中连通的紧集,\(f\)\(K\) 上的连续函数,则 \(f\) 的值域是闭区间 \([m, M]\)

      凸区域

      \(D \subseteq \mathbf{R}^{n}\) 是区域,若对于任意两点 \(x_{0}, x_{1} \in D\) 和一切 \(\lambda \in[0,1]\) 恒有 \(\boldsymbol{x}_{0}+\lambda\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right) \in D\),则称 \(D\) 为凸区域

2.1.3 连续统

  1. 实数系基本定理:以下六个定理相互等价

    1. 确界存在定理:有上界的非空数集必有上确界,有下界的非空数集必有下确界
    2. 收敛准则:单调有界数列必收敛
    3. 区间套定理:设一无穷闭区间序列 \(\left\{\left[a_{n}, b_{n}\right]\right\}\) 适合下面两个条件

      1. 对任一正整数 \(n\)\(a_{n} \leqslant a_{n+1}<b_{n+1} \leqslant b_{n}\)
      2. \({\displaystyle \lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0}\)

      则区间的两个端点所成两数列 \(\left\{a_{n}\right\}\)\(\left\{b_{n}\right\}\) 收敛于同一极限 \(\xi\),且 \(\xi\) 是所有区间的唯一公共点

    4. \(\text{‌Bolzano}-\text{Weierstrass}\) 定理:任一有界数列必有收敛子列,也称作致密性定理

    5. \(\text{Cauchy}\) 收敛原理:数列 \(\left\{x_{n}\right\}\) 有极限当且仅当对任意给定的 \(\varepsilon>0\),存在 \(N \in \mathbf N\),当 \(m, n>N\) 时有 \(\left|x_{n}-x_{m}\right|<\varepsilon\)
    6. \(\text{Borel}\) 定理:若由无限多个开区间所组成的区间集 \(E\) 能够覆盖一个闭区间 \([a, b]\),则存在 \(E\) 中的有限个区间覆盖 \([a, b]\),也称作有限覆盖定理
  2. \(\text{Euclid}\) 空间基本定理:以下四个定理相互等价

    1. \(\text{Cantor}\) 闭区域套定理:设 \(\left\{S_{k}\right\}\)\(\mathbf{R}^{n}\) 上的非空闭集序列,满足 \(S_{1} \supset S_{2} \supset \cdots \supset S_{k} \supset S_{k+1} \supset \cdots\)\({\displaystyle \lim _{k \rightarrow \infty} \operatorname{diam} S_{k}=0}\),则存在惟一点属于 \({\displaystyle \bigcap_{k=1}^{\infty} S_{k}}\).这里 \(\operatorname{diam} S=\sup \{|x-y| \mid x, y \in S\}\)
    2. \(\text{Weierstrass}\) 定理:\(\mathbf{R}^{n}\) 上的有界点列 \(\left\{\boldsymbol{x}_{k}\right\}\) 中必有收敛子列
    3. \(\text{Heine}-\text{Borel}\) 定理:\(\mathbf{R}^{n}\) 上的点集 \(S\) 是紧集当且仅当其是有界闭集
    4. \(\text{Cauchy}\) 收敛原理:\(\mathbf{R}^{n}\) 上的点列 \(\left\{\boldsymbol{x}_{k}\right\}\) 收敛当且仅当对任意给定 \(\varepsilon>0\),存在 \(K \in \mathbf Z_+\) 使得对任意 \(k, l>K\)\(\left|\boldsymbol{x}_{l}-\boldsymbol{x}_{k}\right|<\varepsilon\)

2.2 一元微分法

2.3.1 导数

  1. 导数的定义:设函数 \(y=f(x)\)\(x_{0}\) 附近有定义,对应于自变量的任一改变量 \(\Delta x \ (\Delta x>0\)\(\Delta x<0)\),函数的改变量为 \(\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)\).若极限

    \[ \lim _{\Delta x \rightarrow 0} \dfrac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \dfrac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \]

    存在,则称此极限值为函数 \(f(x)\) 在点 \(x_{0}\) 的导数(微商),记作 \(f^{\prime}\left(x_{0}\right)\)\(y^{\prime}\left(x_{0}\right), \dfrac{\mathrm{d} y}{\mathrm{d} x}\left(x_{0}\right), \dfrac{\mathrm{d} f}{\mathrm{d} x}\left(x_{0}\right)\),此时称 \(f(x)\) 在点 \(x_{0}\) 的导数存在,或称 \(f(x)\) 在点 \(x_{0}\) 可导

    1. \(f(x)\) 在点 \(x\) 可导当且仅当

      \[ \begin{aligned} &\lim _{\Delta x \rightarrow+0} \dfrac{f(x+\Delta x)-f(x)}{\Delta x} \\ &\lim _{\Delta x \rightarrow-0} \dfrac{f(x+\Delta x)-f(x)}{\Delta x} \end{aligned} \]

      同时存在而且相等,分别称之为 \(f(x)\) 在点 \(x\) 的右导数与左导数,记为 \(f_{+}^{\prime}(x)\)\(f_{-}^{\prime}(x)\)

    2. 函数 \(f(x)\) 在区间 \(X\) 内的可导性

      1. \(f(x)\) 在区间 \((a, b)\) 的每一点都可导,则称 \(f(x)\) 在区间 \((a, b)\) 可导;若 \(f(x)\) 在开区间 \((a, b)\) 可导,且 \(f_{+}^{\prime}(a)\)\(f_{-}^{\prime}(b)\) 存在,则称 \(f(x)\) 在闭区间 \([a, b]\) 可导
      2. 若函数 \(f(x)\) 在区间 \(X\) 内可导,则 \(f^{\prime}(x)\)\(X\) 上的函数,称之为导函数
  2. 求导法则

    1. 导数的四则运算
      1. \([u(x) \pm v(x)]^{\prime}=u^{\prime}(x) \pm v^{\prime}(x)\)
      2. \([c u(x)]^{\prime}=c u^{\prime}(x)\),其中 \(c\) 为常数
      3. \([u(x) v(x)]^{\prime}=u^{\prime}(x) v(x)+u(x) v^{\prime}(x)\)
      4. \(\left[\dfrac{u(x)}{v(x)}\right]^{\prime}=\dfrac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)} \ (v(x) \neq 0)\)
    2. 反函数的导数:若 \(y=f(x)\) 有 ① \(f'(x_0) \neq 0\);② \(f(x)\) 在点 \(x_{0}\) 的某一邻域内连续且严格单调,则其反函数 \(x=\varphi(y)\) 在点 \(y_{0}\) 可导,这里 \(y_{0}=f\left(x_{0}\right)\)\(\varphi^{\prime}\left(y_{0}\right)=\dfrac{1}{f^{\prime}\left(x_{0}\right)}\)
    3. 复合函数的导数:若 \(y=f(u)\) 在点 \(u\) 可导,\(u=g(x)\) 在点 \(x\) 可导,则复合函数 \(y=f \circ g(x)\) 在点 \(x\) 可导,且有

      \[ \dfrac{\mathrm{d} y}{\mathrm{d} x}=\dfrac{\mathrm{d} y}{\mathrm{d} u} \cdot \dfrac{\mathrm{d} u}{\mathrm{d} x}=f^{\prime}(g(x)) g^{\prime}(x) \]
  3. 初等函数的导数

    1. \((c)^{\prime}=0\)\(c\) 为常数)
    2. \(\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}\)
    3. \(\left(a^{x}\right)^{\prime}=a^{x} \ln a,\left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x}, \left(\log _{a} x\right)^{\prime}=\dfrac{1}{x \ln a},(\ln x)^{\prime}=\dfrac{1}{x}\)
    4. \((\sin x)^{\prime}=\cos x, (\cos x)^{\prime}=-\sin x, (\tan x)^{\prime}=\sec ^{2} x, (\cot x)^{\prime}=-\csc ^{2} x\)
    5. \((\arcsin x)^{\prime}=\dfrac{1}{\sqrt{1-x^{2}}}, (\arccos x)^{\prime}=-\dfrac{1}{\sqrt{1-x^{2}}}, (\arctan x)^{\prime}=\dfrac{1}{1+x^{2}}, (\operatorname{arccot} x)^{\prime}=-\dfrac{1}{1+x^{2}}\)
    6. \((\operatorname{sinh} x)^{\prime}=\operatorname{cosh} x, (\operatorname{cosh} x)^{\prime}=\operatorname{sinh} x ,(\operatorname{tanh} x)^{\prime}=\dfrac{1}{\operatorname{cosh}^{2} x} ,(\operatorname{coth} x)^{\prime}=-\dfrac{1}{\operatorname{sinh}^{2} x}\)
    7. \((\operatorname{sinh}^{-1} x)^{\prime}=\dfrac{1}{\sqrt{1+x^2}}, (\operatorname{cosh}^{-1} x)^{\prime}=\dfrac{1}{\sqrt{x^2-1}},(\operatorname{tanh}^{-1} x)^{\prime}=\dfrac{1}{1-x^2} ,(\operatorname{coth}^{-1} x)^{\prime}=\dfrac{1}{1-x^2}\)
  4. 高阶导数:递归定义 \(n\) 阶导数 \(y^{(n)} = f^{(n)}(x)\)

    \[ \begin{aligned} & \dfrac{\mathrm{d} y}{\mathrm{d} x} = f^{(1)}(x) = f'(x) \\ & \dfrac{\mathrm{d}^2 y}{\mathrm{d} x^2} = f^{(2)}(x) = f''(x) \\ & \cdots \\ & \dfrac{\mathrm{d}^n y}{\mathrm{d} x^n} = f^{(n)}(x) = (f^{(n-1)}(x))' \end{aligned} \]
    1. \([u(x) \pm v(x)]^{(n)}=u^{(n)}(x) \pm v^{(n)}(x)\)
    2. \(\text{Leibniz}\) 公式:\({\displaystyle [u(x) v(x)]^{(n)}=\sum_{k=0}^{n} \mathrm{C}_{n}^{k} u^{(n-k)} v^{(k)}}\)

2.3.2 微分

  1. 可微性:若 \(y=f(x)\) 是定义在某一区间上的函数,设 \(\Delta y=f(x+\Delta x)-f(x)=A \Delta x+o(\Delta x) \ (\Delta x \rightarrow 0)\),其中 \(A\)\(x\) 的函数, 而与 \(\Delta x\) 无关,则称 \(f(x)\) 在点 \(x\) 是可微的,且称 \(A \Delta x\)\(f(x)\) 在点 \(x\) 的微分,记为 \(\mathrm{d} y\)\(\mathrm{d} f(x)\)
    1. 函数的可微性与可导性等价
    2. 由于 \(A \Delta x\)\(\Delta x\) 的线性函数,且当 \(\Delta x\) 充分小时 \(\Delta y \sim A \Delta x\),则称 \(\mathrm{d} y\)\(\Delta y\) 的线性主部
    3. 高阶微分:定义 \(n\) 阶微分 \(\mathrm{d}^n y = f^{(n)}(x) \mathrm{d} x^n\)
  2. 微分的运算法则
    1. \(\mathrm{d}[f(x) \pm g(x)]=\mathrm{d} f(x) \pm \mathrm{d} g(x)\)
    2. \(\mathrm{d}[f(x) \cdot g(x)]=g(x) \mathrm{d} f(x)+f(x) \mathrm{d} g(x)\)
    3. \(\mathrm{d}\left[\dfrac{f(x)}{g(x)}\right]=\dfrac{g(x) \mathrm{d} f(x)-f(x) \mathrm{d} g(x)}{g^{2}(x)} \ (g(x) \neq 0)\)
    4. 复合函数的微分:设有复合函数 \(y=f(u), u=g(x)\),则

      \[ \mathrm{d} y = f^{\prime}(u) \mathrm{d} u = f^{\prime}(g(x)) g^{\prime}(x) \mathrm{d} x \]

      这种性质称为一阶微分的形式不变性,而高阶微分通常不具有形式不变性

2.3 多元微分法

2.3.1 偏导数

  1. 二元函数的偏导数:设 \(D \subseteq \mathbf{R}^{2}\) 为开集,\(z=f(x, y) \ ((x, y) \in D)\) 是定义在 \(D\) 上的二元函数,\(\left(x_{0}, y_{0}\right) \in D\) 为一定点.如果存在极限 \({\displaystyle \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x}}\),则称函数 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 关于 \(x\) 可偏导,并称此极限为 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 关于 \(x\) 的偏导数,记为 \(\dfrac{\partial z}{\partial x}\left(x_{0}, y_{0}\right)\)\(f_{x}\left(x_{0}, y_{0}\right)\)\(\dfrac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\).若 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 关于 \(x\)\(y\) 均可偏导,则简称 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 可偏导

    1. 偏导函数:如果函数 \(f\)\(D\) 中每一点都关于 \(x\) 可偏导,则 \(D\) 中每一点 \((x, y)\) 与其相应的 \(f\) 关于 \(x\) 的偏导数 \(f_{x}(x, y)\) 构成了一种对应关系即二元函数关系,称为 \(f\) 关于 \(x\) 的偏导函数(也称为偏导数),记为 \(\dfrac{\partial z}{\partial x}\)\(f_{x}(x, y)\)\(\dfrac{\partial f}{\partial x}\)
    2. 方向导数:设 \(D \subseteq \mathbf{R}^{2}\) 为开集,\(z=f(x, y) \ ((x, y) \in D)\) 是定义在 \(D\) 上的二元函数,\(\left(x_{0}, y_{0}\right) \in D\) 为一定点,\(\boldsymbol{v}=(\cos \alpha, \sin \alpha)\) 为一个方向.如果极限 \({\displaystyle \lim _{t \rightarrow 0+} \dfrac{f\left(x_{0}+t \cos \alpha, y_{0}+t \sin \alpha\right)-f\left(x_{0}, y_{0}\right)}{t}}\) 存在,则称此极限为函数 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 的沿方向 \(\boldsymbol{v}\) 的方向导数,记为 \(\dfrac{\partial f}{\partial \boldsymbol{v}}\left(x_{0}, y_{0}\right)\)
    3. 高阶偏导数:设 \(z=f(x, y)\) 在区域 \(D \subseteq \mathbf{R}^{2}\) 上具有偏导函数 \(\dfrac{\partial z}{\partial x}=f_{x}(x, y)\)\(\dfrac{\partial z}{\partial y}=f_{y}(x, y)\),那么在 \(D\) 上,\(f_{x}(x, y)\)\(f_{y}(x, y)\) 都是 \(x, y\) 的二元函数.如果这两个偏导函数的偏导数也存在,则称它们是 \(f(x, y)\) 的二阶偏导数,二阶及二阶以上的偏导数统称为高阶偏导数
      1. 二阶偏导数:
        1. \(\dfrac{\partial^{2} z}{\partial x^{2}}=\dfrac{\partial}{\partial x}\left(\dfrac{\partial z}{\partial x}\right)=\dfrac{\partial}{\partial x}\left(f_{x}(x, y)\right)=f_{x x}(x, y)\)
        2. \(\dfrac{\partial^{2} z}{\partial x \partial y}=\dfrac{\partial}{\partial x}\left(\dfrac{\partial z}{\partial y}\right)=\dfrac{\partial}{\partial x}\left(f_{y}(x, y)\right)=f_{y x}(x, y)\)
        3. \(\dfrac{\partial^{2} z}{\partial y \partial x}=\dfrac{\partial}{\partial y}\left(\dfrac{\partial z}{\partial x}\right)=\dfrac{\partial}{\partial y}\left(f_{x}(x, y)\right)=f_{x y}(x, y)\)
        4. \(\dfrac{\partial^{2} z}{\partial y^{2}}=\dfrac{\partial}{\partial y}\left(\dfrac{\partial z}{\partial y}\right)=\dfrac{\partial}{\partial y}\left(f_{y}(x, y)\right)=f_{y y}(x, y)\)
      2. 如果函数 \(z=f(x, y)\) 的两个混合偏导数 \(f_{x y}\)\(f_{y x}\) 在点 \(\left(x_{0}, y_{0}\right)\) 连续,那么等式 \(f_{x y}\left(x_{0}, y_{0}\right)=f_{y x}\left(x_{0}, y_{0}\right)\) 成立
    4. 链式法则:设 \(z=f(x, y) \ ((x, y) \in D_{f})\) 是区域 \(D_{f} \subseteq \mathbf{R}^{2}\) 上的二元函数,而 \(\boldsymbol{g}: D_{g} \rightarrow \mathbf{R}^{2}\) 是区域 \(D_{g} \subseteq \mathbf{R}^{2}\) 上的二元二维向量值函数.如果 \(g\) 的值域 \(g\left(D_{g}\right) \subseteq D_{f}\),那么可以构造复合函数 \(z=f \circ g=f[x(u, v), y(u, v)] \ ((u, v) \in D_{g})\).设 \(g\)\(\left(u_{0}, v_{0}\right) \in D_{g}\) 点可导,即 \(x=x(u, v), y=y(u, v)\)\(\left(u_{0}, v_{0}\right)\) 点可偏导.记 \(x_{0}=x\left(u_{0}, v_{0}\right), y_{0}=y\left(u_{0}, v_{0}\right)\),如果 \(f\)\(\left(x_{0}, y_{0}\right)\) 点可微,那么

      \[ \begin{aligned} \dfrac{\partial z}{\partial u}\left(u_{0}, v_{0}\right)&=\dfrac{\partial z}{\partial x}\left(x_{0}, y_{0}\right) \dfrac{\partial x}{\partial u}\left(u_{0}, v_{0}\right)+\dfrac{\partial z}{\partial y}\left(x_{0}, y_{0}\right) \dfrac{\partial y}{\partial u}\left(u_{0}, v_{0}\right) \\ \dfrac{\partial z}{\partial v}\left(u_{0}, v_{0}\right)&=\dfrac{\partial z}{\partial x}\left(x_{0}, y_{0}\right) \dfrac{\partial x}{\partial v}\left(u_{0}, v_{0}\right)+\dfrac{\partial z}{\partial y}\left(x_{0}, y_{0}\right) \dfrac{\partial y}{\partial v}\left(u_{0}, v_{0}\right) \end{aligned} \]
  2. \(n\) 元函数的偏导数:设 \(\boldsymbol{x}^{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\) 为开集 \(D \subseteq \mathbf{R}^{n}\) 中一定点,定义 \(n\) 元函数

    \[ u=f\left(x_{1}, x_{2}, \cdots, x_{n}\right),\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D \]

    \(x^{0}\) 点关于 \(x_{i}(i=1,2, \cdots, n)\) 的偏导数为

    \[ \dfrac{\partial f}{\partial x_{i}}\left(\boldsymbol{x}^{0}\right)=\dfrac{\partial f}{\partial x_{i}}\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)=\lim _{\Delta x_{i} \rightarrow 0} \dfrac{f\left(x_{1}^{0}, \cdots, x_{i-1}^{0}, x_{i}^{0}+\Delta x_{i}, x_{i+1}^{0}, \cdots, x_{n}^{0}\right)-f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)}{\Delta x_{i}} \]
    1. 如果函数 \(f\) 在开集(或区域)\(D\) 上每一点关于每个 \(x_{i}\) 都可偏导,则称 \(f\)\(D\) 上可偏导
    2. 链式法则:设 \(z=f\left(y_{1}, y_{2}, \cdots, y_{m}\right) \ (\left(y_{1}, y_{2}, \cdots, y_{m}\right) \in D_{f})\) 为区域 \(D_{f} \subseteq \mathbf{R}^{m}\) 上的 \(m\) 元函数.又设 \(\boldsymbol g: D_{g} \rightarrow \mathbf{R}^{m}\),为区域 \(D_{g} \subseteq \mathbf{R}^{n}\) 上的 \(n\)\(m\) 维向量值函数.如果 \(\boldsymbol{g}\) 的值域 \(\boldsymbol g\left(D_{g}\right) \subseteq D_{f}\),那么可以构造复合函数

      \[ z=f \circ \boldsymbol g=f\left[y_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right), y_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \cdots, y_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right], \left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D_{g} \]

      \(\boldsymbol g\)\(\boldsymbol x^{0} \in D_{g}\) 点可导,即 \(y_{1}, y_{2}, \cdots, y_{m}\)\(\boldsymbol x^{0}\) 点可偏导,且 \(f\)\(\boldsymbol{y}^{0}=\boldsymbol{g}\left(\boldsymbol{x}^{0}\right)\) 点可微,则

      \[ \dfrac{\partial z}{\partial x_{i}}\left(\boldsymbol{x}^{0}\right)=\dfrac{\partial z}{\partial y_{1}}\left(\boldsymbol{y}^{0}\right) \dfrac{\partial y_{1}}{\partial x_{i}}\left(\boldsymbol{x}^{0}\right)+\dfrac{\partial z}{\partial y_{2}}\left(\boldsymbol{y}^{0}\right) \dfrac{\partial y_{2}}{\partial x_{i}}\left(\boldsymbol{x}^{0}\right)+\cdots+\dfrac{\partial z}{\partial y_{m}}\left(\boldsymbol{y}^{0}\right) \dfrac{\partial y_{m}}{\partial x_{i}}\left(\boldsymbol{x}^{0}\right), i=1,2, \cdots, n \]

      上式可以用矩阵表示为

      \[ \begin{bmatrix} \dfrac{\partial z}{\partial x_{1}} & \dfrac{\partial z}{\partial x_{2}} & \cdots & \dfrac{\partial z}{\partial x_{n}} \\ \end{bmatrix}_{\boldsymbol x=\boldsymbol x^{0}}=\begin{bmatrix} \dfrac{\partial z}{\partial y_{1}} & \dfrac{\partial z}{\partial y_{2}} & \cdots & \dfrac{\partial z}{\partial y_{m}} \\ \end{bmatrix}_{\boldsymbol y=\boldsymbol y^{0}}\left[\begin{array}{cccc} \dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial y_{1}}{\partial x_{n}} \\ \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial y_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \cdots & \dfrac{\partial y_{m}}{\partial x_{n}} \end{array}\right]_{\boldsymbol x=\boldsymbol x^{0}} \]

      或用向量值函数的导数记号表为 \((f \circ \boldsymbol g)^{\prime}\left(\boldsymbol{x}_{0}\right)=f^{\prime}\left(\boldsymbol{y}_{0}\right) \boldsymbol{g}^{\prime}\left(\boldsymbol{x}_{0}\right)\)

  3. 向量值函数的导数:设 \(D \subseteq \mathbf R^n, f: \mathbf R^n \to \mathbf R^m\),并设点 \(\boldsymbol x^0 = (x^0_1, x^0_2, \cdots, x^0_n) \in D\).若 \(\boldsymbol{f}\) 的每一个分量函数 \(f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \ (i=1,2, \cdots, m)\) 都在 \(\boldsymbol{x}^{0}\) 点可偏导,则称向量值函数 \(f\)\(x^{0}\) 点可导,并称矩阵

    \[ \left(\dfrac{\partial f_{i}}{\partial x_{j}}\left(\boldsymbol{x}^{0}\right)\right)_{m \times n}=\left[\begin{array}{cccc} \dfrac{\partial f_{1}}{\partial x_{1}}\left(\boldsymbol{x}^{0}\right) & \dfrac{\partial f_{1}}{\partial x_{2}}\left(\boldsymbol{x}^{0}\right) & \cdots & \dfrac{\partial f_{1}}{\partial x_{n}}\left(\boldsymbol{x}^{0}\right) \\ \dfrac{\partial f_{2}}{\partial x_{1}}\left(\boldsymbol{x}^{0}\right) & \dfrac{\partial f_{2}}{\partial x_{2}}\left(\boldsymbol{x}^{0}\right) & \cdots & \dfrac{\partial f_{2}}{\partial x_{n}}\left(\boldsymbol{x}^{0}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{\partial f_{m}}{\partial x_{1}}\left(\boldsymbol{x}^{0}\right) & \dfrac{\partial f_{m}}{\partial x_{2}}\left(\boldsymbol{x}^{0}\right) & \cdots & \dfrac{\partial f_{m}}{\partial x_{n}}\left(\boldsymbol{x}^{0}\right) \end{array}\right] \]

    为向量值函数 \(\boldsymbol f\)\(x^{0}\) 点的导数或 \(\text{Jacobi}\) 矩阵,记为 \(\boldsymbol f^{\prime}\left(x^{0}\right), \mathrm{D} \boldsymbol f\left(x^{0}\right)\)\(J_{\boldsymbol f}\left(x^{0}\right)\).如果向量值函数 \(\boldsymbol{f}\)\(D\) 上每一点可导,则称 \(\boldsymbol{f}\)\(D\) 上可导.此时对应关系 \(x \in D \mapsto \boldsymbol f^{\prime}(x)=J_{\boldsymbol f}(x)\) 称为 \(f\)\(D\) 上的导数, 记为 \(\boldsymbol f^{\prime}\left(x\right), \mathrm{D} \boldsymbol f\left(x\right)\)\(J_{\boldsymbol f}\left(x\right)\)

    1. 向量值函数 \(\boldsymbol{f}\) 连续、可导和可微就是它的每一个坐标分量函数 \(f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \ (i=1,2, \cdots, m)\) 连续、可导和可微
      1. \(\boldsymbol{f}\) 的每一个分量函数 \(f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \ (i=1,2, \cdots, m)\) 的偏导数都在 \(\boldsymbol{x}^{0}\) 点连续,即 \(f\)\(\text{Jacobi}\) 矩阵的每个元素都在 \(x^{0}\) 点连续,则称向量值函数 \(f\) 的导数在 \(x^{0}\) 点连续.若 \(\boldsymbol f\) 的导数在 \(D\) 上每一点连续,则称 \(\boldsymbol f\) 的导数在 \(D\) 上连续
      2. 若存在只与 \(\boldsymbol{x}^{0}\) 有关,与 \(\Delta \boldsymbol{x}\) 无关的矩阵 \(\boldsymbol{A}\) 使得在 \(\boldsymbol{x}^{0}\) 点附近有 \(\Delta y=f\left(x^{0}+\Delta x\right)-f\left(x^{0}\right)=A \Delta x+o(\Delta x)\) (其中 \(\Delta x=\left(\Delta x_{1}, \Delta x_{2}, \cdots, \Delta x_{n}\right)\)\(o(\Delta x)\) 是列向量,其模是 \(\|\Delta x\|\) 的高阶无穷小量),则称向量值函数 \(f\)\(x^{0}\) 点可微,并称 \(\boldsymbol{A} \Delta x\)\(f\)\(\boldsymbol{x}^{0}\) 点的微分,记为 \(\mathrm{d} \boldsymbol{y}\)
        1. 若将 \(\Delta \boldsymbol{x}\) 记为 \(\mathrm{d} \boldsymbol{x}=\left(\mathrm{d} x_{1}, \mathrm{d} x_{2}, \cdots, \mathrm{d} x_{n}\right)\),那么有 \(\mathrm{d} \boldsymbol{y}=\boldsymbol{A} \mathrm{d} \boldsymbol{x}\)
        2. 如果向量值函数 \(\boldsymbol{f}\)\(D\) 上每一点可微,则称 \(\boldsymbol{f}\)\(D\) 上可微
      3. 向量值函数 \(\boldsymbol{f}\)\(x^{0}\) 点可微的充分必要条件是它的坐标分量函数 \(f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \ (i=1,2, \cdots, m)\) 都在 \(x^{0}\) 点可微.此时成立微分公式 \(\mathrm{d} \boldsymbol{y}=\boldsymbol{f}^{\prime}\left(\boldsymbol{x}^{0}\right) \mathrm{d} \boldsymbol{x}\)
    2. 链式法则:设 \(\boldsymbol f: D_{f}\left(\subseteq \mathbf{R}^{k}\right) \rightarrow \mathbf{R}^{m}\)\(\boldsymbol g: D_{g}\left(\subseteq \mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{k}\) 分别是多元向量值函数,且分别在 \(D_{f}\)\(D_{g}\) 上具有连续导数.如果 \(\boldsymbol g\) 的值域 \(\boldsymbol g\left(D_{g}\right) \subseteq D_{f}\),并记 \(\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})\),那么复合向量值函数 \(\boldsymbol f \circ \boldsymbol g\)\(D_{g}\) 上也具有连续的导数,并且成立等式

      \[ (\boldsymbol f \circ \boldsymbol g)^{\prime}(\boldsymbol x)=\boldsymbol f^{\prime}(\boldsymbol u) \cdot \boldsymbol g^{\prime}(\boldsymbol x)=\boldsymbol f^{\prime}[\boldsymbol g(x)] \cdot \boldsymbol g^{\prime}(\boldsymbol x) \]

      其中 \(\boldsymbol f^{\prime}(\boldsymbol u), \boldsymbol g^{\prime}(\boldsymbol x)\)\((\boldsymbol f \circ \boldsymbol g)^{\prime}(\boldsymbol x)\) 是相应的导数,即 \(\text{Jacobi}\) 矩阵

  4. 隐函数存在定理

    1. 一元隐函数存在定理:若二元函数 \(F(x, y)\) 满足条件

      1. \(F\left(x_{0}, y_{0}\right)=0\)
      2. 在闭矩形 \(D=\left\{(x, y)|| x-x_{0}|\leqslant a| y-,y_{0} \mid \leqslant b\right\}\) 上,\(F(x, y)\) 连续且具有连续偏导数
      3. \(F_{y}\left(x_{0}, y_{0}\right) \neq 0\)

      那么

      1. \(\left(x_{0}, y_{0}\right)\) 附近可从方程 \(F(x, y)=0\) 惟一确定隐函数 \(y=f(x) \ (x \in O\left(x_{0}, \rho\right))\) 满足 \(F(x, f(x))=0\) 以及 \(y_{0}=f\left(x_{0}\right)\)
      2. 隐函数 \(y=f(x)\)\(x \in O\left(x_{0}, \rho\right)\) 上连续
      3. 急函数 \(y=f(x)\)\(x \in O\left(x_{0}, \rho\right)\) 上具有连续的导数,且 \(\dfrac{\mathrm{d} y}{\mathrm{d} x}=-\dfrac{F_{x}(x, y)}{F_{y}(x, y)}\)
    2. 多元隐函数存在定理:若 \(n+1\) 元函数 \(F\left(x_{1}, x_{2}, \cdots, x_{n}, y\right)\) 满足条件

      1. \(F\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, y^{0}\right)=0\)
      2. 在闭长方体 \(D=\left\{(x, y)|| y-y^{0}|\leqslant b,| x_{i}-x_{i}^{0} \mid \leqslant a_{i}, i=1,2, \cdots, n\right\}\) 上,函数 \(F\) 连续且具有连续偏导数 \(F_{y}, F_{x_{i}}\)
      3. \(F_{y}\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, y^{0}\right) \neq 0\)

      那么

      1. 在点 \(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, y^{0}\right)\) 附近可以从函数方程 \(F\left(x_{1}, x_{2}, \cdots, x_{n}, y\right)=0\) 惟一确定隐函数

        \[ y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right), \left(x_{1}, x_{2}, \cdots, x_{n}\right) \in O\left(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right), \rho\right) \]

        满足 \(F\left(x_{1}, x_{2}, \cdots, x_{n}, f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right)=0\) 以及 \(y^{0}=f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\)

      2. 隐函数 \(y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\)\(O\left(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right), \rho\right)\) 上连续

      3. 隐函数 \(y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\)\(O\left(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right), \rho\right)\) 上具有连续的偏导数且

        \[ \dfrac{\partial y}{\partial x_{i}}=-\dfrac{F_{x_{i}}\left(x_{1}, x_{2}, \cdots, x_{n}, y\right)}{F_{,}\left(x_{1}, x_{2}, \cdots, x_{n}, y\right)}, i=1,2, \cdots, n \]
    3. 多元向量值隐函数存在定理:设 \(m\)\(n+m\) 元函数 \(F_{i}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)(i=1,2, \cdots, m)\) 满足以下条件

      1. \(F_{i}\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, y_{1}^{0}, y_{2}^{0}, \cdots, y_{m}^{0}\right)=0 \ (i=1,2, \cdots, m)\)
      2. 在闭长方体

        \[ D=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right) \mid \left|x_{i}-x_{i}^{0}\right| \leqslant a_{i},\left|y_{j}-y_{j}^{0}\right| \leqslant b_{j}, i=1,2, \cdots, n ; j=1, 2, \cdots, m\right\} \]

        上函数 \(F_{i} \ (i=1,2, \cdots, m)\) 连续且具有连续偏导数

      3. \(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, y_{1}^{0}, y_{2}^{0}, \cdots, y_{m}^{0}\right)\) 点处,\(\text{Jacobi}\) 行列式 \(\dfrac{\partial\left(F_{1}, F_{2}, \cdots, F_{m}\right)}{\partial\left(y_{1}, y_{2}, \cdots, y_{m}\right)} \neq 0\)

      那么

      1. 在点 \(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, y_{1}^{0}, y_{2}^{0}, \cdots, y_{m}^{0}\right)\) 的某个邻域上,可以从函数方程组

        \[ \left\{\begin{array}{l} F_{1}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \\ F_{2}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \\ \cdots \\ F_{m}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \end{array}\right. \]

        惟一确定向量值隐函数

        \[ \left[\begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{array}\right]=\left[\begin{array}{c} f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \end{array}\right], \left(x_{1}, x_{2}, \cdots, x_{n}\right) \in O\left(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right), \rho\right) \]

        满足方程 \(F_{i}\left(x_{1}, x_{2}, \cdots, x_{n}, f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \cdots, f_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right)=0\) 以及 \(y_{i}^{0}=f_{i}\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right) \ (i=1,2, \cdots, m)\)

      2. 这个向量值隐函数在 \(O\left(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right), \rho\right)\) 上连续

      3. 这个向量值隐函数在 \(O\left(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right), \rho\right)\) 上具有连续的导数,且

        \[ \left[\begin{array}{cccc} \dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial y_{1}}{\partial x_{n}} \\ \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial y_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \cdots & \dfrac{\partial y_{m}}{\partial x_{n}} \end{array}\right]=-\left[\begin{array}{cccc} \dfrac{\partial F_{1}}{\partial y_{1}} & \dfrac{\partial F_{1}}{\partial y_{2}} & \cdots & \dfrac{\partial F_{1}}{\partial y_{m}} \\ \dfrac{\partial F_{2}}{\partial y_{1}} & \dfrac{\partial F_{2}}{\partial y_{2}} & \cdots & \dfrac{\partial F_{2}}{\partial y_{m}} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{\partial F_{m}}{\partial y_{1}} & \dfrac{\partial F_{m}}{\partial y_{2}} & \cdots & \dfrac{\partial F_{m}}{\partial y_{m}} \end{array}\right]^{-1}\left[\begin{array}{cccc} \dfrac{\partial F_{1}}{\partial x_{1}} & \dfrac{\partial F_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial F_{1}}{\partial x_{n}} \\ \dfrac{\partial F_{2}}{\partial x_{1}} & \dfrac{\partial F_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial F_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{\partial F_{m}}{\partial x_{1}} & \dfrac{\partial F_{m}}{\partial x_{2}} & \cdots & \dfrac{\partial F_{m}}{\partial x_{n}} \end{array}\right] \]

        在具体计算向量值隐函数的导数时,通常分别对 \(F_{i}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \ (i=1,2, \cdots, m)\) 求偏导,得到 \({\displaystyle \dfrac{\partial F_{i}}{\partial x_{j}}+\sum_{k=1}^{m} \dfrac{\partial F_{i}}{\partial y_{k}} \dfrac{\partial y_{k}}{\partial x_{j}}=0 \ (i=1,2, \cdots, m)}\),解方程得到

        \[ \dfrac{\partial y_{k}}{\partial x_{j}}=-\dfrac{\dfrac{\partial\left(F_{1}, \cdots, F_{k-1}, F_{k}, F_{k+1}, \cdots, F_{m}\right)}{\partial\left(y_{1}, \cdots, y_{k-1}, x_{j}, y_{k+1}, \cdots, y_{m}\right)}}{\dfrac{\partial\left(F_{1}, F_{2}, \cdots, F_{m}\right)}{\partial\left(y_{1}, y_{2}, \cdots, y_{m}\right)}}, k=1,2, \cdots, m ; j=1,2, \cdots, n \]

      \(\text{Jacobi}\) 行列式

      对于一般的 \(m\)\(n+m\) 元函数组成的方程组

      \[ \left\{\begin{array}{l} F_{1}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \\ F_{2}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \\ \cdots \\ F_{m}\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{m}\right)=0 \end{array}\right. \]

      \[ \dfrac{\partial\left(F_{1}, F_{2}, \cdots, F_{m}\right)}{\partial\left(y_{1}, y_{2}, \cdots, y_{m}\right)}=\left|\begin{array}{cccc} \dfrac{\partial F_{1}}{\partial y_{1}} & \dfrac{\partial F_{1}}{\partial y_{2}} & \cdots & \dfrac{\partial F_{1}}{\partial y_{m}} \\ \dfrac{\partial F_{2}}{\partial y_{1}} & \dfrac{\partial F_{2}}{\partial y_{2}} & \cdots & \dfrac{\partial F_{2}}{\partial y_{m}} \\ \vdots & \vdots & & \vdots \\ \dfrac{\partial F_{m}}{\partial y_{1}} & \dfrac{\partial F_{m}}{\partial y_{2}} & \cdots & \dfrac{\partial F_{m}}{\partial y_{m}} \end{array}\right| \]

      为函数 \(F_{1}, F_{2}, \cdots, F_{m}\) 关于变量 \(y_{1}, y_{2}, \cdots, y_{m}\)\(\text{Jacobi}\) 行列式

  5. 逆映射定理:设 \(\boldsymbol{P}_{0}=\left(u_{0}, v_{0}\right) \in D, x_{0}=x\left(u_{0}, v_{0}\right), y_{0}=y\left(u_{0}, v_{0}\right), \boldsymbol{P}_{0}^{\prime}=\left(x_{0}, y_{0}\right)\),且 \(\boldsymbol{f}\)\(D\) 上具有连续导数.如果在 \(\boldsymbol{P}_{0}\) 点处 \(\boldsymbol{f}\)\(\text{Jacobi}\) 行列式 \(\dfrac{\partial(x, y)}{\partial(u, v)} \neq 0\),那么存在 \(\boldsymbol{P}_{0}^{\prime}\) 的一个邻域 \(O\left(\boldsymbol{P}_{0}^{\prime}, \rho\right)\),在这个邻域上存在 \(\boldsymbol f\) 的具有连续导数的逆映射 \(\boldsymbol g\)

    \[ \left\{\begin{array}{l} u=u(x, y) \\ v=v(x, y) \end{array} \quad (x, y) \in O\left(\boldsymbol{P}_{0}^{\prime}, \rho\right) \right. \]
    1. \(u_{0}=u\left(x_{0}, y_{0}\right), v_{0}=v\left(x_{0}, y_{0}\right)\)
    2. \(\dfrac{\partial u}{\partial x}=\dfrac{\partial y}{\partial v} / \dfrac{\partial(x, y)}{\partial(u, v)}, \dfrac{\partial u}{\partial y}=-\dfrac{\partial x}{\partial v} / \dfrac{\partial(x, y)}{\partial(u, v)}, \dfrac{\partial v}{\partial x}=-\dfrac{\partial y}{\partial u} / \dfrac{\partial(x, y)}{\partial(u, v)}, \dfrac{\partial v}{\partial y}=\dfrac{\partial x}{\partial u} / \dfrac{\partial(x, y)}{\partial(u, v)}\)

2.3.2 全微分

  1. 全微分:设 \(D \subseteq \mathbf{R}^{2}\) 为开集,\(z=f(x, y) \ ((x, y) \in D)\) 是定义在 \(D\) 上的二元函数,\(\left(x_{0}, y_{0}\right) \in D\) 为一定点.若存在只与点 \(\left(x_{0}, y_{0}\right)\) 有关而与 \(\Delta x, \Delta y\) 无关的常数 \(A\)\(B\),使得 \(\Delta z=A \Delta x+B \Delta y+o\left(\sqrt{\Delta x^{2}+\Delta y^{2}}\right)\),这里 \(o\left(\sqrt{\Delta x^{2}+\Delta y^{2}}\right)\) 表示在 \(\sqrt{\Delta x^{2}+\Delta y^{2}} \rightarrow 0\) 时比 \(\sqrt{\Delta x^{2}+\Delta y^{2}}\) 高阶的无穷小量.则称函数 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 处是可微的,并称其线性主要部分 \(A \Delta x+B \Delta y\)\(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 处的全微分,记为 \(\mathrm{d} z\left(x_{0}, y_{0}\right)\)\(\mathrm{d} f\left(x_{0}, y_{0}\right)\)

    1. 全微分公式:\(\mathrm{d} f\left(x_{0}, y_{0}\right)=\dfrac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \mathrm{d} x+\dfrac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \mathrm{d} y\)
    2. 方向导数:设 \(D \subseteq \mathbf{R}^{2}\) 为开集,\(\left(x_{0}, y_{0}\right) \in D\) 为一定点.如果函数 \(z=f(x, y) \ ((x, y) \in D)\)\(\left(x_{0}, y_{0}\right)\) 可微,那么对于任一方向 \(\boldsymbol{v}=(\cos \alpha, \sin \alpha)\)\(f\)\(\left(x_{0}, y_{0}\right)\) 点沿方向 \(\boldsymbol{v}\) 的方向导数存在,且

      \[ \dfrac{\partial f}{\partial \boldsymbol v}\left(x_{0}, y_{0}\right)=\dfrac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \cos \alpha+\dfrac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \sin \alpha \]
    3. 可微性的性质

      1. 可微必连续:如果函数 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 处可微,则 \(f\) 在点 \(\left(x_{0}, y_{0}\right)\) 处连续
      2. 设函数 \(z=f(x, y)\)\(\left(x_{0}, y_{0}\right)\) 点的某个邻域上存在偏导数,并且偏导数在 \(\left(x_{0}, y_{0}\right)\) 点连续,那么 \(f\)\(\left(x_{0}, y_{0}\right)\) 点可微
  2. 高阶微分:在 \(z\)\(k\) 阶微分 \(\mathrm{d}^{k} z\) 的基础上定义它的 \(k+1\) 阶微分为(如果存在)\(\mathrm{d}^{k+1} z=\mathrm{d}\left(\mathrm{d}^{k} z\right) \ (k=1,2, \cdots)\)

    1. 对于二元函数,约定

      \[ \left(\dfrac{\partial}{\partial x}\right)^{p}=\dfrac{\partial^{p}}{\partial x^{p}}, \left(\dfrac{\partial}{\partial x}\right)^{p}\left(\dfrac{\partial}{\partial y}\right)^{q}=\dfrac{\partial^{p+q}}{\partial x^{p} \partial y^{q}}, \left(\dfrac{\partial}{\partial y}\right)^{q}=\dfrac{\partial^{q}}{\partial y^{q}} \ (p, q=1,2, \cdots) \]

      则有

      \[ \mathrm{d}^{k} z=\left(\mathrm{d} x \dfrac{\partial}{\partial x}+\mathrm{d} y \dfrac{\partial}{\partial y}\right)^{k} z \ (k=1,2, \cdots) \]
    2. \(n\) 元函数 \(u=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\) 可同样定义各阶微分,并且有

      \[ \mathrm{d}^{k} u=\left(\mathrm{d} x_{1} \dfrac{\partial}{\partial x_{1}}+\mathrm{d} x_{2} \dfrac{\partial}{\partial x_{2}}+\cdots+\mathrm{d} x_{n} \dfrac{\partial}{\partial x_{n}}\right)^{k} u \ (k=1,2, \cdots) \]
    3. 一阶微分形式不变性:对于多元函数 \(z=f(\boldsymbol{y})\),其中 \(\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{m}\right)\)

      1. \(\boldsymbol{y}\) 为自变量时,一阶全微分形式为 \(\mathrm{d} z=f^{\prime}(\boldsymbol{y}) \mathrm{d} y\)
      2. \(\boldsymbol{y}\) 为中间变量 \(\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x}) \ \left(\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right)\) 时,\(\mathrm{d} z=f^{\prime}(\boldsymbol{y}) \boldsymbol{g}^{\prime}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=f^{\prime}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}\)

      全微分的形式不变性在高阶微分时不成立

2.3.3 极值

  1. 多元函数的极值:设 \(D \in \mathbf{R}^{n}\) 为开区域,\(f(\boldsymbol{x})\) 为定义在 \(D\) 上的函数,\(\boldsymbol{x}_{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right) \in D\).若存在 \(\boldsymbol{x}_{0}\) 的邻域 \(O\left(x_{0}, r\right)\) 使得 \(f\left(\boldsymbol{x}_{0}\right) \geqslant f(\boldsymbol{x})\)\(f\left(\boldsymbol{x}_{0}\right) \leqslant f(\boldsymbol{x}) \ (\boldsymbol{x} \in O\left(\boldsymbol{x}_{0}, r\right))\),则称 \(x_{0}\)\(f\) 的极大值点或极小值点,称 \(f\left(x_{0}\right)\) 为相应的极大值或极小值

    1. 极大值点与极小值点统称为极值点;极大值与极小值统称为极值
    2. 极值点的必要条件:设 \(x_{0}\) 为函数 \(f\) 的极值点,且 \(f\)\(\boldsymbol{x}_{0}\) 点可偏导,则 \(f\)\(\boldsymbol{x}_{0}\) 点的各个一阶偏导数都为零,即

      \[ f_{x_{1}}\left(\boldsymbol{x}_{0}\right)=f_{x_{2}}\left(\boldsymbol{x}_{0}\right)=\cdots=f_{x_{n}}\left(\boldsymbol{x}_{0}\right)=0 \]

      使函数 \(f\) 的各个一阶偏导数同时为零的点称为 \(f\) 的驻点,驻点不一定是极值点

  2. 无条件极值:设 \(n\) 元函数 \(f(\boldsymbol{x})\)\(\boldsymbol{x}_{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\) 附近具有二阶连续偏导数,且 \(\boldsymbol{x}_{0}\)\(f(\boldsymbol{x})\) 的驻点.那么当二次型 \(g(\zeta)=\sum_{i, j=1}^{n} f_{x_{i} x_{j}}\left(x_{0}\right) \zeta_{i} \zeta_{j}\) 正定时,\(f\left(\boldsymbol{x}_{0}\right)\) 为极小值;当 \(g(\zeta)\) 负定时,\(f\left(\boldsymbol{x}_{0}\right)\) 为极大值;当 \(g(\zeta)\) 不定时,\(f\left(x_{0}\right)\) 不是极值

    1. \(a_{i j}=f_{x_{i} x_{j}}\left(\boldsymbol{x}_{0}\right)\),并记

      \[ \boldsymbol{A}_{k}=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k k} \end{array}\right] \]

      称为 \(f\)\(k\)\(\text{Hessian}\) 矩阵

    2. \(\operatorname{det} \boldsymbol{A}_{k}>0\),则二次型 \(g(\xi)\) 是正定的,此时 \(f\left(\boldsymbol{x}_{0}\right)\) 为极小值;若 \((-1)^{k} \operatorname{det} \boldsymbol{A}_{k}>0\),则二次型 \(g(\xi)\) 是负定的,此时 \(f\left(\boldsymbol{x}_{0}\right)\) 为极大值(\(k=1,2, \cdots, n\)

  3. 条件极值:求目标函数 \(f(x_1, x_2, \cdots, x_n)\) 在约束条件

    \[ \left\{\begin{aligned} & g_1(x_1, x_2, \cdots, x_n) = 0 \\ & g_2(x_1, x_2, \cdots, x_n) = 0 \\ & \cdots \\ & g_m(x_1, x_2, \cdots, x_n) = 0 \end{aligned}\right. \]

    下的极值.构造 \(\text{Lagrange}\) 函数

    \[ L\left(x_{1}, x_{2}, \cdots, x_{n}, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)-\sum_{i=1}^{m} \lambda_{i} g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \]

    则条件极值点在方程组

    \[ \left\{\begin{aligned} & \dfrac{\partial L}{\partial x_k} = \dfrac{\partial f}{\partial x_k} - \sum_{i=1}^m \lambda_i \dfrac{\partial g_i}{\partial x_k} = 0 \\ & g_l = 0 \end{aligned}\right. \quad (k = 1, 2, \cdots, n; l = 1, 2, \cdots, m) \]
    1. 若点 \(\boldsymbol{x}_{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\) 为函数 \(f(\boldsymbol{x})\) 满足约束条件的条件极值点,则必存在 \(m\) 个常数 \(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\),使得在 \(x_{0}\) 点有

      \[ \operatorname{\mathbf{grad}} f=\lambda_{1} \operatorname{\mathbf{grad}} g_{1}+\lambda_{2} \operatorname{\mathbf{grad}} g_{2}+\cdots+\lambda_{m} \operatorname{\mathbf{grad}} g_{m} \]
    2. 设点 \(x_{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\)\(m\) 个常数 \(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\) 满足方程组

      \[ \left\{\begin{aligned} & \dfrac{\partial L}{\partial x_k} = \dfrac{\partial f}{\partial x_k} - \sum_{i=1}^m \lambda_i \dfrac{\partial g_i}{\partial x_k} = 0 \\ & g_l = 0 \end{aligned}\right. \quad (k = 1, 2, \cdots, n; l = 1, 2, \cdots, m) \]

      则当方阵 \(\left[\dfrac{\partial^{2} L}{\partial x_{k} \partial x_{1}}\left(x_{0}, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)\right]_{n \times n}\) 为正定(负定)矩阵时,\(x_{0}\) 为满足约束条件的条件极小(大)值点,因此 \(f\left(x_{0}\right)\) 为满足约束条件的条件极小(大)值

2.4 微分学基本定理

  1. 中值定理

    1. \(\text{Fermat}\) 定理:若函数 \(f(x)\)

      1. \(x_{0}\) 点的某一邻域 \(B\left(x_{0}, \delta\right)\) 内有定义且在此邻域内恒有 \(f(x) \leqslant f\left(x_{0}\right)\) 或者 \(f(x) \geqslant f\left(x_{0}\right)\)
      2. \(x_{0}\) 点可导

      则有 \(f^{\prime}\left(x_{0}\right)=0\)

    2. \(\text{Lagrange}\) 中值定理:若函数 \(f(x)\)\([a, b]\) 连续且在 \((a, b)\) 可导,则在 \((a, b)\) 内至少存在一点 \(\xi\),使 \(f^{\prime}(\xi)=\dfrac{f(b)-f(a)}{b-a}\)

      1. \(f(x)\)\((a, b)\) 内每一点 \(x\) 都有 \(f^{\prime}(x)=0\),则在区间 \((a, b)\)\(f(x)\) 为常数
      2. 若两函数 \(f(x)\)\(g(x)\)\((a, b)\) 内满足 \(f^{\prime}(x)=g^{\prime}(x)\),则在 \((a, b)\)\(f(x)=g(x)+C\)\(C\) 为常数)
      3. \(f(x)\)\([a, b]\) 上存在有界导数,则 \(f(x)\)\([a, b]\) 满足 \(\text{Lipschitz}\) 条件,即存在常数 \(L\),对 \([a, b]\) 上任意两点 \(x^{\prime}, x^{\prime \prime}\)\(\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \leqslant L\left|x^{\prime}-x^{\prime \prime}\right|\)
    3. \(\text{Cauchy}\) 中值定理:若 \(f(x)\)\(g(x)\) 在闭区间 \([a, b]\) 上连续,在开区间 \((a, b)\) 内可导,且 \(g^{\prime}(x) \neq 0\).则在 \((a, b)\) 内至少存在一点 \(\xi\),使 \(\dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f^{\prime}(\xi)}{g^{\prime}(\xi)}\)
    4. 多元函数中值定理:设 \(n\) 元函数 \(f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\) 在凸区域 \(D \subseteq \mathbf{R}^{n}\) 上可微,则对于 \(D\) 内任意两点 \(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\)\(\left(x_{1}^{0}+\Delta x_{1}, x_{2}^{0}+\Delta x_{2}, \cdots, x_{n}^{0}+\Delta x_{n}\right)\),至少存在一个 \(\theta \ (0<\theta<1)\),使得

      \[ \begin{aligned} & f\left(x_{1}^{0}+\Delta x_{1}, x_{2}^{0}+\Delta x_{2}, \cdots, x_{n}^{0}+\Delta x_{n}\right)-f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right) \\ = & \sum_{i=1}^{n} f_{x_{i}}\left(x_{1}^{0}+\theta \Delta x_{1}, x_{2}^{0}+\theta \Delta x_{2}, \cdots, x_{n}^{0}+\theta \Delta x_{n}\right) \Delta x_{i} \end{aligned} \]
  2. \(\text{Taylor}\) 公式

    1. 一元函数:若 \(f(x)\)\(x=0\) 点的某个邻域内有直到 \(n+1\) 阶连续导数,则在此邻域内有

      \[ f(x)=f(0)+f^{\prime}(0) x+\dfrac{f^{\prime \prime}(0)}{2 !} x^{2}+\cdots+\dfrac{f^{(n)}(0)}{n !} x^{n}+R_{n}(x) \]

      是函数 \(f(x)\)\(x=0\) 点附近关于 \(x\) 的幂函数展开式,也称作 \(\text{Taylor}\) 公式

      1. \(R_{n}(x)=\dfrac{f^{(n+1)}(\xi)}{(n+1) !} x^{n+1}\)\(\xi \in (0, x)\).称 \(R_n(x)\)\(\text{Lagrange}\) 余项
      2. \(x \rightarrow 0\) 时,\(R_{n}(x)\) 是关于 \(x^{n}\) 的高阶无穷小,因此当 \(|x|\) 充分小时,余项 \(R_{n}(x)=o\left(x^{n}\right)\),称为 \(\text{Peano}\) 余项
    2. 多元函数:设 \(n\) 元函数 \(f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\) 在点 \(\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)\) 附近具有 \(k+1\) 阶的连续偏导数,那么在这点附近有

      \[ \begin{aligned} & f\left(x_{1}^{0}+\Delta x_{1}, x_{2}^{0}+\Delta x_{2}, \cdots, x_{n}^{0}+\Delta x_{n}\right) \\ = & f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)+\left(\sum_{i=1}^{n} \Delta x_{i} \dfrac{\partial}{\partial x_{i}}\right) f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right) \\ & + \dfrac{1}{2 !}\left(\sum_{i=1}^{n} \Delta x_{i} \dfrac{\partial}{\partial x_{i}}\right)^{2} f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)+\cdots \\ & + \dfrac{1}{k !}\left(\sum_{i=1}^{n} \Delta x_{i} \dfrac{\partial}{\partial x_{i}}\right)^{k} f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)+R_{k} \end{aligned} \]

      其中 \(R_{k}=\dfrac{1}{(k+1) !}\left(\sum_{i=1}^{n} \Delta x_{i} \dfrac{\partial}{\partial x_{i}}\right)^{k+1} f\left(x_{1}^{0}+\theta \Delta x_{1}, x_{2}^{0}+\theta \Delta x_{2}, \cdots, x_{n}^{0}+\theta \Delta x_{n}\right) \ (0<\theta<1)\)\(\text{Lagrange}\) 余项