跳转至

2 极限理论

2.1 等子与核

2.1.1 等子与余等子

  1. \(f, g \in[A, B]\)

    1. \(E \in \operatorname{Ob} \mathscr{C}\)\(e \in[E, A]\) 满足

      1. \(f \circ e=g \circ e\)
      2. 对每个 \(D \in \operatorname{Ob} \mathscr{C}\) 以及 \(h \in[D, A]\),当 \(f \circ h=g \circ h\) 时皆有唯一的 \(k \in[D, E]\) 使 \(e \circ k=h\)

      则称 \(\langle E, e\rangle\)\(f\)\(g\) 的等子,记为 \(\operatorname{equ}(f, g)\).通常用 \(E(f, g)\) 表示对象 \(E\),用 \(\alpha(f, g)\) 表示态射 \(e\),用 \(\beta(f, g, h)\) 表示 \(k\)

    2. \(C \in \operatorname{Ob} \mathscr{C}\)\(c \in[B, C]\) 满足

      1. \(c \circ f=c \circ g\)
      2. 对每个 \(D \in \operatorname{Ob} \mathscr{C}\) 以及 \(h \in[B, D]\),当 \(h \circ f=h \circ g\) 时皆有唯一的 \(k \in[C, D]\) 使 \(k \circ c=h\)

      则称 \(\langle c, C\rangle\)\(f\)\(g\) 的余等子,记为 \(\operatorname{coequ}(f, g)\).通常用 \(\widetilde{E}(f, g)\) 表示对象 \(C\),用 \(\widetilde{\alpha}(f, g)\) 表示 \(c\)

  2. \(\mathscr{C}\) 有(余)等子当且仅当 \(A, B \in \operatorname{Ob} \mathscr{C}\)\(f, g \in[A, B]\) 蕴含 \(f\)\(g\) 的(余)等子存在

    1. \(\mathscr{C}\) 有等子当且仅当 \(\mathscr{C}^{\text{op}}\) 有余等子
    2. \(\mathscr{C}\) 有余等子当且仅当 \(\mathscr{C}^{\text{op}}\) 有等子
  3. \(\mathscr{C}\) 为范畴且 \(A, B, D, E \in \operatorname{Ob} \mathscr{C}, f, g \in[A, B], h \in[D, A]\)\(f \circ h=g \circ h\)
    1. \(\alpha(f, g)\) 为单态射
      1. \(\alpha(f, g)=\alpha(g, f)\)
      2. \(f \circ \alpha(f, g)=g \circ \alpha(f, g)\)
      3. \(\alpha(f, g) \circ \beta(f, g, h)=h\)
      4. 若令 \(\delta(f)=\beta\left(f, f, \mathbf{I}_{\mathbf{A}}\right)\),则 \(\alpha(f, f) \circ \delta(f)=\mathbf{I}_{A}\),因此 \(\alpha(f, f)\)\(\text{retraction}\)
    2. \(f=g \leftrightarrow \alpha(f, g)\) 为同构态射 \(\leftrightarrow \alpha(f, g)\) 为外态射
    3. \(\beta(f, g, h)=\gamma(f, g, h) \circ \delta(f \circ h)\)
    4. \(K \in \operatorname{Ob} \mathscr{C}\)\(k \in[K, A]\),当令 \(\gamma(f, g, k)=\beta(f, g, k \circ \alpha(f \circ k, g \circ k))\) 时有 \(\alpha(f, g) \circ \gamma(f, g, k)=k \circ \alpha(f \circ k, g \circ k)\)
    5. \(K \in \operatorname{Ob} \mathscr{C}\)\(k \in[K, E(f, g)]\),则 \(\beta(f, g, \alpha(f, g) \circ k)=k\)

2.1.2 积与余积

  1. \(\mathscr{C}\) 为范畴且 \(\left(A_{i}\right)_{i \in \mathbf{I}}\)\(\mathscr{C}\) 的对象族

    1. 如果 \(P \in \operatorname{Ob} \mathscr{C}\)\(\mathscr{C}\) 的态射族 \(\left(\pi_{i}\right)_{i \in \mathbf{I}}\) 满足

      1. \(i \in \mathbf{I}\),则 \(\pi_{i} \in\left[P, A_{i}\right]\)
      2. 对任意的 \(P^{\prime} \in \operatorname{Ob} \mathscr{C}\)\(\mathscr{C}\) 的态射族 \(\left(f_{i}\right)_{i \in \mathbf{I}}\),若当 \(i \in \mathbf{I}\) 时皆有 \(f_{i} \in\left[P^{\prime}, A_{i}\right]\),则必有唯一的 \(\varphi \in\left[P^{\prime}, P\right]\) 使得 \(f_{i}=\pi_{i} \circ \varphi\)

      则称 \(\left\langle P,\left(\pi_{i}\right)_{i \in \mathbf{I}}\right\rangle\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的积,并常用 \(\mathop{\large ⨅ \normalsize} \left(A_{i}\right)_{i \in \mathbf{I}}\)\(\mathop{\large ⨅ \normalsize} A_{i}\) 表示其中的 \(P\)

      1. \(\pi_{i}\)\(\mathop{\large ⨅ \normalsize} A_{i}\)\(A_{i}\) 的投影
      2. \(\mathbf{I}=\{1, \cdots, n\}\),则用 \(\left\langle f_{1}, \cdots, f_{n}\right\rangle\) 表示唯一的 \(\varphi\)
    2. 如果 \(Q \in \operatorname{Ob} \mathscr{C}\)\(\mathscr{C}\) 的态射族 \(\left(\mu_{i}\right)_{i \in \mathbf{I}}\) 满足

      1. \(i \in \mathbf{I}\),则 \(\mu_{i} \in\left[A_{i}, Q\right]\)
      2. 对任意的 \(Q^{\prime} \in \operatorname{Ob} \mathscr{C}\)\(\mathscr{C}\) 的任意态射族 \(\left(g_{i}\right)_{i \in \mathbf{I}}\),若当 \(i \in \mathbf{I}\) 时皆有 \(g_{i} \in\left[A_{i}, Q^{\prime}\right]\),则必有唯一的 \(\psi \in\left[Q, Q^{\prime}\right]\) 使得 \(g_{i}=\psi \circ \mu_{i}\)

      则称 \(\left\langle\left(\mu_{i}\right)_{i \in \mathbf{I}}, Q\right\rangle\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的余积,并常用 \(\bigsqcup \left(A_{i}\right)_{i \in \mathbf{I}}\)\(\bigsqcup A_{i}\) 表示其中的 \(Q\)

      1. \(\mu_{i}\)\(\bigsqcup A_{i}\)\(A_{i}\) 的嵌入
      2. \(\mathbf{I}=\{1, \cdots, n\}\),则用 \(\left[g_{1}, \cdots, g_{n}\right]\) 表示唯一的 \(\psi\)
  2. \(\mathscr{C}\) 为范畴,\(A, P, Q \in \operatorname{Ob} \mathscr{C}\)\(f \in[P, A], g \in[A, Q]\)

    1. \(A\) 为终止对象当且仅当 \(\langle A, \varnothing\rangle\)\(\varnothing\) 的积
    2. \(A\) 为初始对象当且仅当 \(\langle\varnothing, A\rangle\)\(\varnothing\) 的余积
    3. \(\langle P, f\rangle\)\(\{A\}\) 的积当且仅当 \(f\) 为同构态射
    4. \(\langle g, Q\rangle\)\(\{A\}\) 的余积当且仅当 \(f\) 为同构态射
  3. \(\mathscr{C}\) 的任意对象族 \((A_{i})_{i \in \mathbf{I}}\) 的(余)积都存在,则称 \(\mathscr{C}\) 有(余)积
    1. \(\mathscr{C}\) 的任意有穷对象族 \(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的(余)积都存在,则称 \(\mathscr{C}\) 有有穷(余)积
    2. 若对任意的自然数 \(n>0\)\(A_{1}, \cdots, A_{n} \in \operatorname{Ob} \mathscr{C}\),对象族 \(\left(A_{i}\right)_{1 \leqslant i \leqslant n}\) 的(余)积,则称 \(\mathscr{E}\)\(n\) 元(余)积
  4. \(\mathscr{C}\) 为有积范畴,且 \(A, A_{1}, A_{2} \in \operatorname{Ob} \mathscr{C}\)
    1. \(\left\langle A_{1} \times A_{2},\left\{\pi_{1}, \pi_{2}\right\}\right\rangle\)\(\left\{A_{1}, A_{2}\right\}\) 的积且 \(h \in\left[A, A_{1} \times A_{2}\right]\),则 \(\left\langle\pi_{1} \circ h, \pi_{2} \circ h\right\rangle=h\)
    2. \(\left\langle\left\{\mu_{1}, \mu_{2}\right\}, A_{1} \sqcup A_{2}\right\rangle\)\(\left\{A_{1}, A_{2}\right\}\) 的余积且 \(k \in\left[A_{1} \sqcup A_{2}, A\right]\),则 \(\left[k \circ \mu_{1}, k \circ \mu_{2}\right]=k\)
  5. \(\mathscr{C}\) 为范畴,\(A \in \operatorname{Ob} \mathscr{C}\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\)\(\mathscr{C}\) 的对象族
    1. \(\left\langle \mathop{\large ⨅ \normalsize} A_{i},\left(\pi_{i}\right)_{i \in \mathbf{I}}\right\rangle\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的积,若 \(h, k \in\left[A, \mathop{\large ⨅ \normalsize} A_{i}\right]\) 使得 \(\pi_{i} \circ h=\pi_{i} \circ k\),则 \(h=k\)
    2. \(\left\langle\left(\mu_{i}\right)_{i \in \mathbf{I}}, \bigsqcup A_{i}\right\rangle\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的余积,若 \(h, k \in\left[\bigsqcup A_{i}, A\right]\) 使 \(h \circ \mu_{i}=k \circ \mu_{i}\),则 \(h=k\)
  6. \(\mathscr{C}\) 为范畴,\(\left(A_{i}\right)_{i \in \mathbf{I}}\)\(\mathscr{C}\) 的对象族,且对任意的 \(i, j \in \mathbf{I}\),皆有 \(\left[A_{i}, A_{j}\right] \neq \varnothing\)
    1. \(\left\langle A_{i},\left(\pi_{i}\right)_{i \in \mathbf{I}}\right\rangle\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的积,则每个 \(\pi_{i}(i \in \mathbf{I})\) 均为 \(\text{retraction}\)
    2. \(\left\langle\left(\mu_{i}\right)_{i \in \mathbf{I}}, \bigsqcup A_{i}\right\rangle\)\(\left(A_{i}\right)_{i \in \mathbf{I}}\) 的余积,则每个 \(\mu_{i}(i \in \mathbf{I})\) 均为 \(\text{section}\)

2.1.3 回拉与外推

  1. \(\mathscr{C}\) 为范畴且 \(f_{1}, f_{2}, g_{1}, g_{2} \in \operatorname{Mor} \mathscr{C}\)

    1. \(f_{1} \circ g_{2}=f_{2} \circ g_{1}\),若 \(g_{1}^{\prime}, g_{2}^{\prime} \in \operatorname{Mor} \mathscr{C}\) 使 \(f_{1} \circ g_{2}^{\prime}=f_{2} \circ g_{1}^{\prime}\),则有唯一的 \(\varphi \in \operatorname{Mor} \mathscr{C}\) 使

      \[ g_{1}^{\prime}=g_{1} \circ \varphi \wedge g_{2}^{\prime}=g_{2} \circ \varphi \]

      则称 \(\left\langle g_{1}, g_{2}\right\rangle\)\(f_{1}\)\(f_{2}\) 的回拉,记为 \(\operatorname{pullback}\left(f_{1}, f_{2}\right)\)

    2. \(g_{2} \circ f_{1}=g_{1} \circ f_{2}\),若 \(g_{1}^{\prime}, g_{2}^{\prime} \in \operatorname{Mor} \mathscr{C}\) 使 \(g_{2}^{\prime} \circ f_{1}=g_{1}^{\prime} \circ f_{2}\),则有唯一的 \(\psi \in \operatorname{Mor} \mathscr{C}\) 使

      \[g_{1}^{\prime}=\psi \circ g_{1} \wedge g_{2}^{\prime}=\psi \circ g_{2} \]

      则称 \(\left\langle g_{1}, g_{2}\right\rangle\)\(f_{1}\)\(f_{2}\) 的外推,记为 \(\operatorname{pushout}\left(f_{1}, f_{2}\right)\)

  2. \(\operatorname{pullback}\left(f_{1}, f_{2}\right)=\left\langle g_{1}, g_{2}\right\rangle\),若 \(f_{i}(i=1,2)\) 为单态射,则 \(g_{i}\) 也是单态射

  3. \(\mathscr{C}\) 为范畴,\(A, B, C \in \operatorname{Ob} \mathscr{C}, f \in[A, C]\)\(g \in[B, C]\).若 \(\langle A \times \left.B,\left\{\pi, \pi^{\prime}\right\}\right\rangle\)\(\{A, B\}\) 的积且 \(\langle E, e\rangle=\mathrm{equ}\left(f \circ \pi, g \circ \pi^{\prime}\right)\),则

    \[ \operatorname{pullback}(f, g)=\left\langle\pi^{\prime} \circ e, \pi \circ e\right\rangle \]
  4. 回拉与外推的合成性质:设 \(\mathscr{C}\) 是一个范畴

    1. \(f \in[B, A], g \in[C, A], h \in[E, C], g^{\prime} \in[D, B], f^{\prime} \in[D, C], h^{\prime} \in[F, D], f^{\prime \prime} \in[F, E]\),若

      \[ \operatorname{pullback}(f, g)=\left\langle f^{\prime}, g^{\prime}\right\rangle \wedge \operatorname{pullback}\left(h, f^{\prime}\right)= \left\langle h^{\prime}, f^{\prime \prime}\right\rangle \]

      \(\operatorname{pullback} (f, g \circ h)=\left\langle f^{\prime \prime}, g^{\prime} \circ h^{\prime}\right\rangle\)

    2. \(f \in[A, B], g \in[A, C], h \in[C, E], g^{\prime} \in[B, D], f^{\prime} \in[C, D], h^{\prime} \in[D, F], f^{\prime \prime} \in[E, F]\),若

      \[ \operatorname{pushout}(f, g)=\left\langle f^{\prime}, g^{\prime}\right\rangle \wedge \operatorname{pushout} \left(h, f^{\prime}\right)= \left\langle h^{\prime}, f^{\prime \prime}\right\rangle \]

      \(\operatorname{pushout} (f, h \circ g)=\left\langle f^{\prime \prime}, h^{\prime} \circ g^{\prime}\right\rangle\)

2.1.4 核与余核

  1. 设范畴 \(\mathscr{C}\) 有零对象,\(A, B \in \operatorname{Ob} \mathscr{C}\)\(f \in[A, B]\)

    1. \(\operatorname{equ}\left(f, \mathbf{O}_{A B}\right)\)\(f\) 的核,记为 \(\operatorname{Ker}(f)\),并用 \(\operatorname{ker}(f)\) 表示 \(\alpha\left(f, \mathbf{O}_{A B}\right)\)
    2. \(\operatorname{coequ}\left(f, \mathbf{O}_{A B}\right)\)\(f\) 的余核,记为 \(\operatorname{Cok}(f)\),并用 \(\operatorname{coker}(f)\) 表示 \(\widetilde{\alpha}\left(f, \mathbf{O}_{A B}\right)\)

    设范畴 \(\mathscr{C}\) 有零对象,若每个 \(f \in \operatorname{Mor} \mathscr{C}\) 的(余)核均存在,则称 \(\mathscr{C}\) 有(余)核

  2. 假定范畴 \(\mathscr{C}\) 有零对象、核与余核,\(A, B \in \operatorname{Ob} \mathscr{C}\)\(f \in[A, B]\)

    1. \(\operatorname{ker}(f)\) 是单态射,\(\operatorname{coker}(f)\) 为外态射
    2. \(f \circ \operatorname{ker}(f)=\mathbf{O}_{E B}\)\(\operatorname{coker}(f) \circ f=\mathbf{O}_{\mathbf{A E}}\)
    3. \(h \in \mathscr{C}[D, A]\),则 \(f \circ h=\mathbf{O}_{D B}\) 当且仅当有唯一的 \(k \in \mathscr{C}[D, E]\) 使 \(\operatorname{ker}(f) \circ k=h\)

      \(h \in \mathscr{C}[B, D]\),则 \(h \circ f=\mathbf{O}_{A D}\) 当且仅当有唯一的 \(k \in \mathscr{C}[\widetilde{E}, D]\) 使 \(k \circ \operatorname{coker}(f)=h\)

    4. 有唯一的 \(m \in \operatorname{Mor} \mathscr{C}\) 使 \(f=\operatorname{ker}(\operatorname{coker}(f)) \circ m\);有唯一的 \(\widetilde{m} \in \operatorname{Mor} \mathscr{C}\) 使 \(f=\widetilde{m} \circ \operatorname{coker}(\operatorname{ker}(f))\)

    5. \(\operatorname{ker}(f)=\operatorname{ker}(\operatorname{coker}(\operatorname{ker}(f)))\)\(\operatorname{coker}(f)=\operatorname{coker}(\operatorname{ker}(\operatorname{coker}(f)))\) 在同构意义下成立
  3. 设范畴 \(\mathscr{C}\) 有零对象且 \(f \in \operatorname{Mor} \mathscr{C}\),若 \(h \in \operatorname{Mor} \mathscr{C}\) 使 \(f=\operatorname{ker}(h)\)(或 \(f=\operatorname{coker}(h)\)),则称 \(f\) 为核态射(或余核态射)

    1. \(f\) 为核态射当且仅当在同构意义下有 \(f=\operatorname{ker}(\operatorname{coker}(f))\)
    2. \(f\) 为余核态射当且仅当 \(f=\operatorname{coker}(\operatorname{ker}(f))\)
    3. 设范畴 \(\mathscr{C}\) 有零对象,核和余核.\(A, B \in \operatorname{Ob} \mathscr{C}\)\(f \in[A, B]\)
      1. 存在 \(q \in \operatorname{Mor} \mathscr{C}\) 使 \(f=m \circ q\)\(m=\operatorname{ker}(\operatorname{coker}(f))\)
      2. \(f=m^{\prime} \circ q^{\prime}\)\(m^{\prime}\) 为核态射,则有唯一的 \(t \in \operatorname{Mor} \mathscr{C}\) 使 \(m=m^{\prime} \circ t\)\(q^{\prime}=t \circ q\)
      3. \(\mathscr{C}\) 有等子且每个单态射 \(u \in \operatorname{Mor} \mathscr{C}\) 均为核态射,则 \(q\) 为外态射

2.2 锥与极限

2.2.1 锥与余锥

  1. 设图 \(\mathcal{D} = \left<V, E, \Psi\right>\)\(\langle\mathcal{D}, \Gamma\rangle\) 为范畴 \(\mathscr{C}\) 中的一个图

    1. \(L \in \operatorname{Ob} \mathscr{C}\)\(\tau: V \rightarrow \operatorname{Mor} \mathscr{C}\) 满足

      1. \(v \in V\),则 \(\tau(v) \in\left[L, A_{v}\right]\)
      2. \(e \in E\) 使 \(\Psi(e)=\langle u, v\rangle\),则 \(f_{e} \circ \tau(u)=\tau(v)\)

      则称 \(\langle L, \tau\rangle\)\(\langle\mathcal{D}, \Gamma\rangle\) 的一个锥,记为 \(\operatorname{con}_{\mathcal{D}, \Gamma}(L, \tau)\) 或简记为 \(\operatorname{con}(L, \tau)\)

    2. \(L \in \operatorname{Ob} \mathscr{C}\)\(\tau: V \rightarrow \operatorname{Mor} \mathscr{C}\) 满足

      1. \(v \in V\),则 \(\tau(v) \in\left[A_{v}, L\right]\)
      2. \(e \in E\) 使 \(\Psi(e)=\langle u, v\rangle\),则 \(\tau(v) \circ f_{e}=\tau(u)\)

      则称 \(\langle\tau, L\rangle\)\(\left<\mathcal{D}, \Gamma\right>\) 的一个余锥,记为 \(\operatorname{cocon}_{\mathcal{D}, \Gamma}(\tau, L)\) 或简记为 \(\operatorname{cocon}(\tau, L)\)

  2. \(\langle\mathcal{D}, \Gamma\rangle\) 为范畴中的一个图

    1. \(\langle L, \tau\rangle\)\(\langle X, \alpha\rangle\) 均为 \(\langle\mathcal{D}, \Gamma\rangle\) 的锥,若 \(h \in[L, X]\) 满足任意 \(v \in V\) 均有

      \[ \alpha(v) \circ h=\tau(v) \]

      则称 \(h\) 为从 \(\operatorname{con}(L, \tau)\)\(\operatorname{con}(X, \alpha)\) 的锥态射,记为 \(h: \operatorname{con}(L, \tau) \rightarrow \operatorname{con}(X, \alpha)\)

    2. \(\langle\tau, L\rangle\)\(\langle\alpha, X\rangle\) 均为 \(\langle\mathcal{D}, \Gamma\rangle\) 的余锥.若 \(h \in[L, X]\) 满足任意 \(v \in V\) 均有

      \[ h \circ \tau(v)=\alpha(v) \]

      则称 \(h\) 为从 \(\operatorname{cocon}(\tau, L)\)\(\operatorname{cocon}(\alpha, X)\) 的余锥态射,记为 \(h: \operatorname{cocon}(\tau, L) \rightarrow \operatorname{cocon}(\alpha, X)\)

  3. \(\langle\mathcal{D}, \Gamma\rangle\) 为范畴 \(\mathscr{C}\) 中的一个图。

    1. \(\langle L, \tau\rangle,\langle X, \alpha\rangle\)\(\langle Y, \beta\rangle\) 都是 \(\langle\mathcal{D}, \Gamma\rangle\) 的锥
      1. \(\mathbf{I}_{L}: \operatorname{con}(L, \tau) \rightarrow \operatorname{con}(L, \tau)\)
      2. \(h: \operatorname{con}(L, \tau) \rightarrow \operatorname{con}(X, \alpha)\)\(k: \operatorname{con}(X, \alpha) \rightarrow \operatorname{con}(Y, \beta)\),则 \(k \circ h: \operatorname{con}(L, \tau) \rightarrow \operatorname{con}(Y, \beta)\)
    2. \(\langle\tau, L\rangle,\langle\alpha, X\rangle\)\(\langle\beta, Y\rangle\) 都是 \(\langle\mathcal{D}, \Gamma\rangle\) 的余锥
      1. \(\mathbf{I}_{L}: \operatorname{cocon}(\tau, L) \rightarrow \operatorname{cocon}(\tau, L)\)
      2. \(h: \operatorname{cocon}(\tau, L) \rightarrow \operatorname{cocon}(\alpha, X)\)\(k: \operatorname{cocon}(\alpha, X) \rightarrow \operatorname{cocon}(\beta, Y)\),则 \(k \circ h: \operatorname{cocon}(\tau, L) \rightarrow \operatorname{cocon}(\beta, Y)\)

2.2.2 极限与余极限

  1. \(\langle\mathcal{D}, \Gamma\rangle\) 为范畴 \(\mathscr{C}\) 中的一个图

    1. \(\langle L, \tau\rangle\)\(\langle\mathcal{D}, \Gamma\rangle\) 的一个锥,若对 \(\langle\mathcal{D}, \Gamma\rangle\) 的任意一个锥 \(\langle X, \alpha\rangle\),皆有唯一的锥态射

      \[ h: \operatorname{con}(X, \alpha) \rightarrow \operatorname{con}(L, \tau) \]

      则称 \(\langle L, \tau\rangle\)\(\langle\mathcal{D}, \Gamma\rangle\) 的一个极限,记为 \(\varprojlim \langle\mathcal{D}, \Gamma\rangle\)

      1. \(\mathscr{C}\) 中每一个图的极限存在,则称 \(\mathscr{C}\) 有极限或为完备的
      2. \(\mathscr{C}\) 中每一个有穷图的极限存在,则称 \(\mathscr{C}\) 有有穷极限或有穷完备的
      3. \(\varprojlim \langle\mathcal{D}, \Gamma\rangle=\langle L, \tau\rangle\),则 \((\tau(v))_{v \in V}\) 为整体单态射,即对任意的 \(X \in \operatorname{Ob} \mathscr{C}\)\(h, k \in[X, L]\),当对每个 \(v \in V\) 皆有 \(\tau(v) \circ h=\tau(v) \circ k\) 时,必有 \(h=k\)
    2. \(\langle\tau, L\rangle\)\(\langle\mathcal{D}, \Gamma\rangle\) 的一个余锥,若对 \(\langle\mathcal{D}, \Gamma\rangle\) 的任意一个余锥 \(\langle\alpha, X\rangle\),皆有唯一的余锥态射

      \[ h: \operatorname{cocon}(\tau, L) \rightarrow \operatorname{cocon}(\alpha, X) \]

      则称 \(\langle\tau, L\rangle\)\(\langle\mathcal{D}, \Gamma\rangle\) 的一个余极限,记为 \(\varinjlim \langle\mathcal{D}, \Gamma\rangle\)

      1. \(\mathscr{C}\) 中每一个图的余极限存在,则称 \(\mathscr{C}\) 有余极限或为余完备的
      2. \(\mathscr{C}\) 中每一个有穷图的余极限存在,则称 \(\mathscr{C}\) 有有穷余极限或有穷余完备的
      3. \(\varinjlim \langle\mathcal{D}, \Gamma\rangle=\langle\tau, L\rangle\),则 \((\tau(v))_{v \in V}\) 为整体外态射,即对任意的 \(X \in \operatorname{Ob} \mathscr{C}\)\(h, k \in[L, X]\),当对每个 \(v \in V\) 皆有 \(h \circ \tau(v)=k \circ \tau(v)\) 时,必有 \(h=k\)
  2. \(\mathscr{C}\) 是一个范畴且 \(\mathcal{D} = \left<V, E, \Psi\right>\) 是一个图

    1. \(\mathscr{C}\) 有等子且 \(\langle\mathcal{D}, \Gamma\rangle\)\(\mathscr{C}\) 中一个图.若 \(\mathcal{D}_{V}\) 的积和 \(\mathcal{D}_{E}\) 的积都存在,则 \(\langle\mathcal{D}, \Gamma\rangle\) 的极限必存在
    2. \(\mathscr{C}\) 有余等子且 \(\langle\mathcal{D}, \Gamma\rangle\)\(\mathscr{C}\) 的一个图.若 \(\mathcal{D}_{V}\) 的余积和 \(\mathcal{D}_{E}\) 的余积都存在,则 \(\langle\mathcal{D}, \Gamma\rangle\) 的余极限必存在
  3. \(\mathscr{C}\) 为范畴
    1. \(\mathscr{C}\) 有(余)积和(余)等子,则 \(\mathscr{C}\) 为(余)完备的
    2. \(\mathscr{C}\) 有有穷(余)积和(余)等子,则 \(\mathscr{C}\) 为有穷(余)完备的
    3. \(\mathscr{C}\) 有终止对象、二元积和等子,则 \(\mathscr{C}\) 为有穷完备的
    4. \(\mathscr{C}\) 有初始对象、二元余积和余等子,则 \(\mathscr{C}\) 为有穷余完备的
  4. \(\mathcal{D}\) 为范畴 \(\mathscr{A}\) 中的图
    1. \(\varprojlim \mathcal{D}=\left\langle L,\left\{\gamma_{A} \mid A \in V\right\}\right\rangle\),则如下结论成立
      1. \(X \in \operatorname{Ob} \mathscr{A}\),若 \(\sigma, \tau \in \mathscr{A}[X, L]\) 使得 \(\forall A \in V: \gamma_{A} \circ \sigma=\gamma_{A} \circ \tau\),则 \(\sigma=\tau\),即 \(\left(\gamma_{A}\right)_{A \in V}\) 为整体单态射
      2. \(\varprojlim \mathcal{D}=\left\langle L^{\prime},\left\{\gamma_{A}^{\prime} \mid A \in V\right\}\right\rangle\),则有唯一的同构态射 \(\sigma: L^{\prime} \rightarrow L\) 使得 \(\forall A \in V: \gamma_{A} \circ \sigma=\gamma_{A}^{\prime}\)
      3. 若有同构态射 \(\sigma: L^{\prime} \rightarrow L\) 使得 \(\forall A \in V: \gamma_{A} \circ \sigma=\gamma_{A}^{\prime}\),则 \(\lim \mathcal{D}=\left\langle L^{\prime},\left\{\gamma_{A}^{\prime} \mid A \in V\right\}\right\rangle\)
    2. \(\varinjlim \mathcal{D}=\left\langle\left\{\gamma_{A} \mid A \in V\right\}, L\right\rangle\),则如下结论成立
      1. \(X \in \operatorname{Ob} \mathscr{A}\),若 \(\sigma, \tau \in \mathscr{A}[X, L]\) 使得 \(\forall A \in V: \sigma \circ \gamma_{A}=\tau \circ \gamma_{A}\),则 \(\sigma=\tau\),即 \(\left(\gamma_{A}\right)_{A \in V}\) 为整体外态射
      2. \(\varinjlim \mathcal{D}=\left\langle\left\{\gamma_{A}^{\prime} \mid A \in V\right\}, L^{\prime}\right\rangle\),则有唯一的同构态射 \(\sigma: L \rightarrow L^{\prime}\) 使得 \(\forall A \in V: \sigma \circ \gamma_{A}=\gamma_{A}^{\prime}\)
      3. 若有同构态射 \(\sigma: L \rightarrow L^{\prime}\) 使得 \(\forall A \in V: \sigma \circ \gamma_{A}=\gamma_{A}^{\prime}\),则 \(\varinjlim \mathcal{D}=\left\langle\left\{\gamma_{A}^{\prime} \mid A \in V\right\}, L^{\prime}\right\rangle\)